
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Automatic Approach to Validating

Requirement-to-Code Traces

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplomingenieur

im Masterstudium

Informatik

Eingereicht von:

Achraf Ghabi, Bakk. techn.

Angefertigt am:

Institute for Systems Engineering and Automation (SEA)

Beurteilung:

Prof. Dr. Alexander Egyed

Linz, Juli 2010

Abstract I

Abstract

Model traceability is a research field dedicated to establishing and maintaining the map-

ping between requirements, software models, documentation, and code. It is considered

as a sign for process maturity and products quality. And, it is mandated by many stan-

dards, such as: NASA Software Assurance Standard and U.K. Office of Government

Commerce.

Traces between requirements and code (requirement-to-code) reveal where requirements

are implemented. Such traces are essential for code understanding and change manage-

ment. Unfortunately, the handling of traces is highly error prone, on one side due to

the informal nature of requirements and on another due to the continuous evolution of

the code. Incorrect traces are not only less useful for a stakeholder but also misleading

in many cases. The correctness of traces is crucial to exploit their usefulness.

This thesis introduces a novel method for validating requirements-to-code traces by

considering the calling relationships within the source code. As input, the approach

requires existing requirements-to-code traces and as output it identifies potential errors

in the input. The approach does this by investigating patterns of traces together with

patterns of calling relationships. Our observation is that code that traces to a particular

requirement is connected through calling relationships and we exploit this connectivity

for validating traceability. The empirical evaluation on four case study systems covering

150 KLOC and 59 sample requirements demonstrates that our approach detects most

errors with > 90% correctness and the quality of validated traces decreases very slowly

with less input quality. Our approach is fully automated, tool supported, and efficient

(linear computational complexity with input quantity with validation times < 3 seconds

on the largest case study).

Kurzfassung II

Kurzfassung

Modell Traceability ist ein Forschungsgebiet gewidmet dem Aufbau und der Pflege von

Beziehungen zwischen Anforderungen, Software-Modellen, Dokumentation und Code.

Sie wird oft als Maßstab der Prozessreife und Qualität von Software Produkten herange-

zogen. Sie wird sogar von vielen Standards, wie z.B. dem NASA Software Assurance

Standard oder U.K. der Office of Government Commerce, vorgeschrieben.

Traces zwischen Anforderungen und Code (Requirement-to-Code) zeigen, wo die An-

forderungen umgesetzt werden. Solche Traces sind essentiell für das Code-Verständnis

und Änderungs-Management. Leider ist der Umgang mit Traces sehr fehleranfällig,

auf der einen Seite durch die informellen Eigenschaften der Anforderungen und auf

der anderen Seite durch die kontinuierliche Weiterentwicklung vom Code. Falsche

Traces sind nicht nur weniger nützlich für Projektbeteiligten, sondern auch irreführend

in vielen Fällen. Die Richtigkeit der Traces ist entscheidend um ihr volles Potenzial

auszunutzen.

Diese Arbeit stellt ein neuartiges Verfahren zur Validierung von Requirement-to-Code

Traces vor, indem man die Aufrufbeziehungen im Quellcode analysiert. Als Eingabe

benötigt der Ansatz bestehende Requirement-to-Code Traces und als Ausgabe iden-

tifiziert er mögliche falsche Traces in der Eingabe. Dazu, untersucht unser Ansatz

Muster von Traces zusammen mit Aufrufbeziehungen. Unsere Beobachtungen zeigen,

dass Code der auf eine besonderen Anforderung verweist, auch durch Aufrufbeziehun-

gen verbunden ist. Wir nutzen diese Verbindungsmuster um Traces zu validieren. Die

empirische Auswertung von vier Fallstudien von Systemen mit einer Größe von 150

KLOC und 59 Anforderungen zeigt, dass unser Ansatz die meisten Fehler mit > 90%

Richtigkeit erkennt und die Qualität der validierten Traces nur sehr langsam mit fall-

ende Eingabequalität nachlässt. Unser Ansatz ist voll automatisiert, Tool unterstützt

und effizient (lineare Komplexität mit einer Laufzeit von < 3 Sekunden bei der Vali-

dierung der größten Fallstudie).

Contents III

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 3

1.3 Structure of this Thesis . 4

2 Requirement-to-Code Traceability 6

2.1 Terminology . 7

2.2 Usefulness of Traceability . 10

2.3 Traceability Techniques . 12

2.3.1 Static . 13

2.3.1.1 Concern Graph . 13

2.3.1.2 Abstract System Dependence Graph 15

2.3.2 Dynamic . 17

2.3.3 Textual . 18

2.3.3.1 Information Retrieval 19

2.3.3.2 Example IR Model: Vector Space Model 22

2.3.3.3 IR as a Traceability Approach 23

2.3.4 Hybrid . 24

2.3.4.1 SNIAFL . 25

2.3.4.2 CERBERUS . 28

2.4 Trace Validation . 32

3 Hypothesis of Surroundedness 36

3.1 Case Studies . 37

3.2 Requirement Call Graph . 39

3.3 Hypothesis . 41

4 Observations 42

4.1 Clustering . 42

4.2 Connectedness . 44

4.3 Requirement Call Chain . 45

4.4 Patterns . 46

4.4.1 Surrounding Patterns . 47

4.4.2 Boundary Patterns . 49

Contents IV

5 Automated Trace Validation Approach 51

5.1 T over N Dominance . 51

5.2 Boundary patterns vs. t/n-surrounding patterns 53

5.3 Algorithm . 54

6 Tool Support: TraZer 58

6.1 Design Decisions . 58

6.1.1 Eclipse as Platform . 58

6.1.2 Database . 60

6.2 User Interface . 63

6.2.1 Perspective . 63

6.2.2 Editors . 65

6.2.3 Views . 67

7 Evaluation 70

7.1 Accuracy . 70

7.2 Coverage . 73

7.3 Scalability . 74

8 Discussion and Future Work 75

8.1 Incompleteness . 75

8.2 Granularity . 77

8.3 Traces Prediction . 78

8.4 Conclusion . 79

Bibliography 80

List of Abbreviations V

List of Abbreviations

ASDG Abstract System Dependence Graph

BRCG Branch-Reserving Call Graph

CG Call Graph

DFT Dynamic Feature Traces

EF-ICF Element Frequency-Inverse Concern Frequency

EPL Eclipse Public License

GPL GNU General Public License

IR Information Retrieval

IDE Integrated Development Environment

IDF Inverse Document Frequency (idf)

LSI Latent Semantic Indexing

MPL Mozilla Public License

PDA Prune Dependency Analysis

PDG Procedure Dependence Graph

RCG Requirement Call Graph

RTM Requirement Trace Matrix

SEA The Institute for Systems Engineering and Automation

SDG System Dependence Graph

SPR Scenario-Based Probabilistic Ranking

SR Software Reconnaissance

TF Term frequency (tf)

TPTP Eclipse Test and Performance Tools Platform

VSR Vector Space Retrieval

UI User Interface

List of Figures VI

List of Figures

2.1 Domain overlapping between program comprehension, feature location,

and requirement traceability . 10

2.2 formal representation of a Multiplier class [24] 14

2.3 Concern Graph of the Multiplier class [24] 15

2.4 System Dependence Graph building process [6] 16

2.5 IR traceability recovery process [2] . 21

2.6 A Sample BRCG: Source Code (left) Vs. BRCG (right) [29] 26

2.7 The Process of SNIAFL Approach [29] 27

2.8 Overview of the CERBERUS approach [10] 29

2.9 Performance of the 13 study participants plotted in the precision-recall

space [18] . 33

3.1 Caller and Callee relationships . 39

3.2 Excerpt of Call Graph for Chess System 40

3.3 Requirement call graph for Chess System 41

4.1 Most methods implementing a given requirement are connected directly

or indirectly by method calls . 45

4.2 Call chain from a Chess RCG . 46

4.3 Examples of “t �? � t” and “n �? � n” patterns. 47

4.4 A boundary pattern “t �? � n” . 49

5.1 Combination of t-surrounding and n-surrounding on method Con-

trol.setPiece() . 52

5.2 Errors inside and outside of requirements regions are detectable, but

errors along boundaries of such regions are not. 53

5.3 Distribution of correctness over coverage. 56

6.1 DatabaseReference class diagram. 61

6.2 The TraZer perspective. 64

6.3 The RTM Editor. 67

7.1 Validation quality of traces/no-traces in poor quality RTMs. 71

7.2 Validation coverage for traces. 73

List of Tables VII

List of Tables

3.1 Properties of case study projects. 38

3.2 Excerpt of RTM from Chess system. 38

4.1 Likelihood of clustering . 43

4.2 Percentage of connected trace/no-trace methods 44

4.3 Likelihood of calling relationship patterns 48

5.1 Seven categories of surrounding and boundary patterns 54

5.2 Coverage and correctness of categories in % 56

Danksagung VIII

Danksagung

Ich möchte mich an dieser Stelle bei allen Personen, die mich während des Studiums

und der Anfertigung der Diplomarbeit fachlich und mental unterstützt haben, ganz

herzlich bedanken.

Besonderer Dank gilt meiner Familie, besonders meiner Eltern, die immer an mich

geglaubt haben und mir während einer schwierigen Zeit zur Seite gestanden sind.

Ebenfalls gilt besonderer Dank Prof. Dr. Alexander Egyed für die großzügige Unter-

schtützung und Betreuung bei dieser Arbeit und der damit verbundene Mühe. Ohne

diese Unterschtützung hätte diese Arbeit in dieser Form nicht durchgeführt werden

können.

Achraf Ghabi

Introduction 1

Chapter 1

Introduction

1.1 Motivation

Requirements-to-code traces reveal where in the code a requirement is implemented.

This is important for many software engineering tasks including code comprehension

and understanding the impact of requirement changes. Traces are said to be most useful

in cases where developers are not/no longer familiar with the source code - a situation

that tends to occur during maintenance where original developers may have left, or in

larger software systems where code is manipulated by multiple developers. It has been

shown in several experiments [25] that lack of understanding where a requirement is

implemented leads to higher effort and more errors. This is not surprising because a

developer who is not/no longer familiar with the source code is less capable of perform-

ing changes than a person familiar with the source code. It has also been shown that

developers not familiar with source code are typically only able to locate about half of

the code where a requirement is implemented [11, 18]. It is thus not surprising that

software engineering suffers from this lack of knowledge, leading to changes at inappro-

priate places or unnecessary code replication. Keeping track of where requirements are

implemented in the code is thus a fundamental best practice of the software engineering

process.

Unfortunately, capturing and maintaining traces is a largely manual activity. Some

automation exists but many approaches are not applicable to informal/unstructured

requirements [13]. One example is information retrieval where requirements-to-

code traces are derived through wording similarities between requirements and code

[7, 8, 2, 16, 19]. However, the reported precision and recalls for these approaches vary

widely and are typically dependent on the quality and quantity of descriptions that

complement requirements and source code. Whether requirements-to-code traces are

captured manually or through the help of such heuristic approaches, the quality of the

Introduction 2

traces is unpredictable. Even if traces are captured by the original developers and are

thus of high quality, these traces may deteriorate over time (with code and requirements

changes) unless they are explicitly maintained.

This thesis introduces a novel approach for validating the correctness of requirements-

to-code traces by exploring known trace knowledge in combination with patterns of

calling relationships. Specifically, if a method has neighboring methods that are calling

it (callers) or are being called by it (callees) and these neighboring methods are known

to trace to a given requirement then the method in question is very likely to traces

to that requirement also. We refer to this property as “surroundedness” (implying

a method being surrounded by similarly tracing methods). As input, our approach

obviously requires existing requirements-to-code traces, which need validation. Our

tool implementation accepts such traces in form of a requirements-to-code trace matrix

(RTM) where for each method and requirement it is defined whether the method traces

or does not trace to the given requirement. Each cell in the RTM is thus a “trace link”

that defines whether a method is implementing a given requirement (trace) or not (no

trace). The RTM is expected to be complete but not expected to be (fully) correct.

Furthermore, our approach requires knowledge which methods call one another (i.e.,

to be able to identify neighboring methods). Our tool implementation expects this in

form of a call graph which identifies methods as nodes and calls as edges among these

nodes.

For each method and requirement (each cell in the RTM) the principles of surround-

edness are tested separately. If the principle applies then our approach computes an

expected trace (’t’) or expected no trace (’n’) - depending on the patterns involved .

If the principle does not apply for a given requirement and method then our approach

fails (’fail’) to compute an expected value. For all cells where the approach fails, our

approach is not able to validate it (manual intervention is necessary). For the remain-

ing cells, the approach simply compares the expected value with the actual value in

the RTM and, if they differ, the user is informed of the error. The unique aspect of

our work is that it considers method’s calling relationships (which are presumed cor-

rect) together with the traces of surrounding methods (the caller and callee methods

which are of unknown quality). Our approach is thus not an oracle that generates some

traces automatically (e.g., like information retrieval [2, 15, 20] but instead searches for

likely/unlikely combinations of traces and neighbors. Simply speaking, we found that

certain combinations of traces together with calling relationships are not expected to

occur often (a heuristic). Thus, neighboring method’s traces need not be correct for our

approach to function. Quite contrary, the fact that neighboring traces are included in

the reasoning process makes it possible to identify unlikely situations which we report

as errors .

Introduction 3

Our approach was empirically evaluated on four case study systems – totaling over

150KLOC in size and covering different application domains. For these systems over

39 requirement-to-code trace links were available which we obtained from the original

developers of these systems. In this work, we will present four patterns for identifying

expected ’traces’ and ’no traces’. Since these patterns have somewhat different likeli-

hoods of correctness (the heuristical nature), our approach also reports the likelihoods

of the detected errors being correct. Our empirical evaluation showed that our approach

is able to validate about 93-96% of the 39 requirements-to-code traces and of these most

of the requirements-to-code traces (about 77-89%) are validated with >90% correct-

ness. In comparison, note that a random chance of guessing a correct expected ’t’ is

just 5-12% because the requirements are often only implemented in small portions of

the code and traces are thus rare in comparison to no-traces. To evaluate whether our

approach is able to correctly validate traces of lesser quality, we additionally performed

random seeding of errors and found that our approach performs well (near optimal)

with the percentage of seeded errors exceeding 10, 20, 30% while the percentage of

cells where our approach fails to compute an expected result increases - we refer to

this as coverage. This implies that our approach is able to validate even poor quality

RTMs well, however, with decreasing coverage. This appears an acceptable trade off

since the quality is more important than quantity (poor quality implies more manual

intervention anyhow!).

1.2 Goals

The goal of this work is to devise an algorithm for automatically validating

requirements-to-code traces. As input, the algorithm takes a requirements-to-code

trace matrix (RTM) were the matrix cells represent the individual relationships be-

tween methods and requirements. The contents of a cell is either a “t” (trace link) if

the method implements the requirement or a “n” (no trace link) if it does not. In prin-

ciple, a cell could also be empty (incompleteness) but for validating traces this is not

useful and ignored. The algorithm for validating the traces should either confirm the

contents of a cell (e.g., the algorithm agrees with a given ’t’ or ’n’) or it should report

an error (an incorrect ’t’ or ’n’). Detecting an error is synonymous with recommending

a correction: if it determines an incorrect ’t’ then the algorithm expects a ’n’ and vice

versa. However, due to the informal nature of requirements and the complexity of the

source code, it is more advisable that a human manually investigates error feedback. It

is important to note that for trace validation, it is as important to validate a ’no trace’

as it is to validate a ’trace’ (an incorrect ’trace’ is as much an error as an incorrect ’no

trace’). Having more correct no traces would decrease the chances of having incorrect

traces and vice versa.

Introduction 4

During this work, we implemented a tool that supports the user in validating trace

links. The user provides the input data (RTM and call graph) and the tool validate

the cells in the RTM, reporting back false trace information. The interactivity with the

user is very important. The tool must provide information about the expected value

for a cell and hence let him double check the surroundedness property of methods. It is

also important to measure the behavior of our approach on poor quality inputs, since

validation is only required for RTMs known to contain possible erroneous trace/no trace

links. Our approach must deliver reliable accuracy even when validating poor quality

RTMs. We will verify the delivered traces expectations by testing multiple input RTMs

with different correctness levels.

1.3 Structure of this Thesis

In Chapter 2 - Requirement-to-Code Traceability, we will enframe the area of require-

ment traceability that we cover in this thesis. First, we will define the specific traceabil-

ity terminology, before explaining the usefulness of traceability in software engineering.

Later, we will discuss the traceability topics that seemed to be related to our work.

Chapter 3 - Hypothesis of Surroundedness will be the first step into our work. We

will explain the main problem of validating traces and our hypothesis on how are we

intending to resolve it. We will also introduce case study systems that will be required to

confirm or disprove our assumptions. This chapter refers also to fundamental techniques

that are applied by other approaches presented in Chapter 2. These techniques are

partly adopted to serve our approach.

Chapter 4 - Observations explains the different aspects that we were able to record on

the case study systems using the techniques that we built in chapter 3 for this purpose.

These aspects are the main motivation to our approach and helped us proposing an

algorithm for validating traces.

Chapter 5 - Automated Trace Validation Approach presents our concrete trace valida-

tion algorithm and an empirical study of its performance on the case study systems.

Of course, the results are different from one system to another, but the most important

is that our algorithm delivers reliable correctness values.

Chapter 6 - Tool introduces the eclipse plug-in that we have implemented during this

work. It is supposed to realize the automation of our algorithm and make the traces

validation task more handy to users.

Introduction 5

In Chapter 7 - Evaluation, we, obviously, will apply our approach on erroneous traces

and evaluate its performance in different cases. We focus, thereby, on the aspects of

accuracy, coverage, and scalability of our algorithm.

Chapter 8 - Future work discusses the open issues that we might investigate in future

studies. The open issues might be limitless in this research area, but we will refer to

those issues with which we also had to deal during this work.

Requirement-to-Code Traceability 6

Chapter 2

Requirement-to-Code Traceability

Although requirement traceability is mandated by many standards, many companies do

not use it on their projects because of the costs following it. Requirement traceability

requires an additional effort form developers during a project lifecycle. We might argue

that the developer has just to explicitly set a link between the requirement and the

code which he is implementing. This is basically what the developer has to do during

the first implementation of a feature. We refer to this activity as traces retrieval. On

the first sight, this operation might seem manageable with low effort. Unfortunately,

the traceability tend to be more complicated during the life cycle of a software product.

The continuous changes on source code might affect existing traces. In that case, we

talk about maintenance of traces which is task that requires the most effort. Thus,

software development companies have to deal with a trade of between the effort and

the usefulness of requirement traceability.

Egyed et al. [11] showed that capturing traces is not a trivial task. They conducted

an experiment in which developers having different experience levels tried to capture

trace links between requirements and code in two example projects. The results of

the experiment resulted in interesting insights. They showed that the effort required

for traces increases with increasing complexity of the code. The participants in the

experiments tended to make more mistakes when dealing with more complex code.

The complexity is not referring to the asymptotic complexity of the code but rather

the semantic facts, such as: the meaning of identifiers. Using inappropriate identifiers

or unusual acronyms in the code would make it more difficult to understand, and

consequently, the developer might be mislead to define wrong traces or to oversee some

of them.

Researchers are certain about the benefit that traceability would introduce to software

development process once the effort is amortized. They developed many approaches

with different levels of automation in order to minimize the effort required from a

Requirement-to-Code Traceability 7

human actor and let the computer retrieve the traces automatically. Among all the

proposed techniques, some are also using the human-like approaches, such as: wording

similarities between requirement definitions and source code identifiers [2]. Thus, using

the appropriate terminology is not only important to humans but also to automatic

techniques.

In this chapter, we will present a common introduction to traceability with the focus on

the various available techniques for it. As we previously mentioned, there are already

many techniques proposing how to capture requirement-to-code traces. We will discuss

the most known techniques in order to show their advantages and also their limitations.

This should help understanding how our approach for validating requirement-to-code

traces would help overcoming many of these limitations, and hence it will improve the

overall automation of traceability. But in order to understand these techniques the

best, let us first explain the formal terminology related to requirement traceability.

2.1 Terminology

In the course of this thesis, we investigated traceability and we noticed that computer

scientists are often using a specific terminology for requirement traceability. Some-

times, they were clearly referring to different things, but in other cases, they did apply

synonyms for the same thing just because they are handling the same problem but

from another perspective. In this section, we will explain the fundamental terminology

about traceability that we continuously encounter throughout this work. Indeed, it

is important to understand resemblances and differences between terms before talking

about relating a technique to the one term or the other term.

From the first impression, a novice to requirement traceability would intuitively un-

derstand it as a research area dealing with links between requirement and source code,

which are called traces. But in computer science, the term“trace”(noun) is usually used

for execution traces and debugging statements. Formally, the IEEE Standard Glossary

of Software Engineering Terminology 1 has three definitions for this term:

(1) A record of the execution of a computer program, showing the se-

quence of instructions executed, the names and values of variables, or both.

Types include execution trace, retrospective trace, subroutine trace, symbolic

trace, variable trace. (2) To produce a record as in (1). (3) To establish a

relationship between two or more products of the development process; for

1http://standards.ieee.org/findstds/standard/610.12-1990.html

http://standards.ieee.org/findstds/standard/610.12-1990.html

Requirement-to-Code Traceability 8

example, to establish the relationship between a given requirement and the

design element that implements that requirement.

Requirement traceability refers to traces from the third definition (3). A requirement-

to-code trace is a trace connecting a requirement to the source code implementing it or

vice-versa. The trace relationship is commonly be-directional and serves to reach the

source code from the requirement as well as the requirement from the source code. In

this work, we derived another term, namely “no-trace”, which designates the opposite

relationship of trace. When a no-trace relationship is set between a requirement and

a source code, it means that the source code is not implementing that requirement

(and vice-versa: the requirement is not implemented by the given piece of code). Many

researcher used also other terms (e.g. relationship, link) to denote a trace. In this work,

you might also alternate using these synonyms (relationship, link and trace) to denote

a traceability relationship.

Requirement-to-code traces are usually gathered in a two-dimensional matrix where

requirements are set on the one dimension and the code elements on the other. This kind

of matrix is commonly known as requirement trace matrix (RTM). Although there is no

standard format definition for RTMs, common sense practices recommended ordering

the requirements in the columns and code elements in the rows. Actually, a two-

dimensional matrix is nothing else than a table. Therefore, RTMs are often stored as

tables in spread sheet editing tools which can be office tools, such as: Microsoft Excel
2 , LibreOffice Calc 3. . . The idea of putting the requirements on the columns side of

a table could be related to the limitation of such tools (e.g. Microsoft Office 2007

supports only tables with less than 256 columns).

Requirement traceability is a software engineering research area covering activities that

are related to traces, such as: capturing, recovering, and maintaining traces. The IEEE

Standard Glossary of Software Engineering Terminology defines traceability as:

(1) The degree to which a relationship can be established between two

or more products of the development process, especially products having a

predecessor-successor or master-subordinate relationship to one another; for

example, the degree to which the requirements and design of a given software

component match. (2) The degree to which each element in a software de-

velopment product establishes its reason for existing; for example, the degree

to which each element in a bubble chart references the requirement that it

satisfies.

2http://office.microsoft.com/en-us/excel
3http://www.libreoffice.org/features/calc

Requirement-to-Code Traceability 9

This definition denotes the general concept of traceability. Requirement traceability

is a special application of that concept The requirement engineering community have,

therefore, their specific definitions. For example, Gotel and Finkelstein said that “Re-

quirements traceability refers to the ability to describe and follow the life of a require-

ment, in both a forwards and backwards direction”[13]. The life of a requirement is

obviously the transition from a simple requirement description in human language to

an executable function in a program. In other words, requirement traceability deals

with the information (or more precisely traces) connecting the requirements in their

row state to their final executable state. This definition proposed by Gotel and Finkel-

stein covers also the scope of this thesis. Validating traces is an essential activity for

capturing, recovering or maintaining such connections between different system models,

namely requirement documentation and code implementation. For simplicity, we will

refer to requirement traceability in the remaining of this work as traceability.

Traceability is a very active research area. It is excessively used for resolving many soft-

ware engineering issues. Program comprehension and feature location are two research

topics which are very related to traceability. People are often confused assigning new

techniques to the one or the other research topic. We need to understand the bound-

aries of each topic in order to understand the usefulness of traceability. Biggerstaff

defined program comprehension saying:

A person understands a program when they are able to explain the pro-

gram, its structure, its behavior, its effects on its operational context, and

its relationships to its application domain in terms that are qualitatively dif-

ferent from the tokens used to construct the source code of the program.[5]

In other words, program comprehension is the research area studying how to under-

stand programs, their structure, their functionalities, and their applications. But un-

derstanding all these properties requires necessarily understanding the relationships

between different components of a program. Thus, program comprehension needs the

feature location techniques to establish the relationships between features (functional

properties) and source code (structural properties) of a program (software system). But

feature location is a completely separate research area that could also be used for other

purposes, e.g. estimating the removal or addition of features.

We depicted in Figure 2.1 the overlapping between program comprehension, feature

location, and requirement traceability. Feature location is covering a big part in pro-

gram comprehension and almost completely incorporating requirement traceability. We

discussed the need to feature location in program comprehension, but how could we

explain the relationship between feature location and requirement traceability? In or-

der to answer this question, we need to understand the difference between a feature

Requirement-to-Code Traceability 10

Figure 2.1: Domain overlapping between program comprehension, feature location, and
requirement traceability

and a requirement. The IEEE Standard Glossary of Software Engineering Terminology

defines a software feature as:

. . . A software characteristic specified or implied by requirements documen-

tation (for example, functionality, performance, attributes, or design con-

straints).

A feature is, thus, a set of system requirements, and hence the difference between a

feature and requirement is only a question of granularity. A requirement is very granular

and directly related to the low level (implementation) functions, but a feature is rather

a general definition of a high level functionality which is usually realized by multiple low

level functions. Features are often called concerns because they are of higher significance

for external stockholders of a software system (e.g. client, user. . .).

2.2 Usefulness of Traceability

In order to talk about usefulness of traceability, we have to assume that traces are

available, correct, and complete. Under that same assumption, Winkler and Pilgrim

[27] summarized important application scenarios of traces from various scientific reports

and research contributions. They were basically able to identify 16 use cases. In

Requirement-to-Code Traceability 11

the following, we list from them the ones that we consider as general for software

products:

Estimating change impact Traces provide direct links to change locations when

proposing requirements changes. Knowing where a requirement is implemented,

the developer will be able to better estimate the effort needed for a certain change.

Proving system adequateness Through traces, the customer should be able to identify

the range of implemented features. This makes him sure that he is getting the

requested functionalities and he is not paying for implementing a code to which

he is not in need.

Validating artifacts Multiple defects could be identified by applying traces on artifacts

level. A simple traces check could ensure whether an artifact is implementing the

intended specification or not. Defects, such as: inconsistency and incompleteness,

should be detectable at a very early stage of an artifact life cycle.

Testing the system Because, traces provide a direct reference between the tested code

and the requirement it is implementing, the developer can easily consult the

appropriate specification in order to create suitable tests cases and meaningful

test data.

Supporting special audits or reviews This is the main reason for including traceability

in the NASA Software Assurance Standard. The traces are mandatory to perform

audits or reviews of critical parts in a system. Without traces, this task could be

practically impossible on huge software systems.

Improving changeability Having an overview of artifacts interconnections with their

corresponding requirements should help when designing new changes on the sys-

tem, and especially when the changes are crosscutting multiple requirements

and/or artifacts at the same time.

Monitoring progress The amount of traced code and requirements could be used by

the management as a metric about the overall progress of a project. The manager

can identify missing implementations and tests for untraced requirements.

Understanding the system For stakeholders with limited information about a system,

the traces could be practical instruments to understand the system from different

perspectives. For example, the architecture of the system would be very clear to

an external developer when she sees the link between the requirement documen-

tation and the code implementing it.

Requirement-to-Code Traceability 12

These are only example of traceability use cases and there are many others. As men-

tioned before, there is a tradeoff between effort and usefulness. A company should

identify the benefit that they are expecting from performing traceability before even

starting to capture traces. The estimated cost for such a task has been always the

most cruel rival of using it, even though Egyed et al. [11] have shown that its overall

effort is very limited. Many researches were set to investigate this problem and propose

techniques that at a time, reduce the effort and improve the quality of traceability.

For a program, call graph could be generated in multiple ways. On the one side,

there are static call graphs that are generated out of the structural properties of a

program, such as: concern graph (see section), or abstract system dependency graph

(see section). . . On the other side, there are dynamic call graphs that are generated at

runtime depicting executed call relationships between code elements. In this thesis, we

decided to use dynamic call graphs due to multiple reasons. Compared to static graphs,

a dynamic call graph would contain only needed code and thus, it truncates implicitly

dead code and reduces the size of the graph which would improve the performance of

any algorithm running over the graph structure.

2.3 Traceability Techniques

In last two decades [9], there has been a lot of research activity about traceability

issues, especially requirement-to-code traceability. Multiple techniques has been pre-

sented where different approaches are applied to retrieve and/or maintain trace links

between code and other software artifacts. Revelle et al. [22] classified state of the art

feature location techniques into three main core types: static, dynamic, and textual

analysis. These types do also apply for traceability techniques. Textual analysis has

been mainly exploited by performing Information Retrieval techniques on textual soft-

ware artifacts (e.g. source code, developer comments, and documentation) [2, 15, 20].

A Static analysis method was proposed by Chen and Rajlich [6]. The method should

help a user navigating on a static abstract system dependency graph which would

help her understand and retrieve implementation locations of different requirements.

Other approaches [17, 21, 24] investigated the dynamic information acquired from pro-

grams. Profiling tools are used to gather execution information of software artifacts.

Dynamic techniques analyzing this kind of information with the aim to provide a bet-

ter understanding of the requirements implementation in a program. There are also

hybrid methods that combine multiple techniques into one approach. Eaddy et al.

[10] presented a very good example of combining the three technique types (static, dy-

namic, and textual) in order to improve the quality of trace recovery process in their

tool (CERBERUS). Calling relationships in particular have also been used to improve

Requirement-to-Code Traceability 13

the reported ranking of traces in information retrieval approaches [8, 2, 22, 10] where

higher-ranked traces are presumed to be more correct traces.

In the following sections, we will present few approaches implementing the different

types. At this stage, it is important to understand the effort and quality related to

each approach.

2.3.1 Static

Multiple conventional techniques (grep, IDE, database. . .) could statically identify

relationships between different elements in source code. Developers are usually applying

these static techniques for locating and understanding features in a program. The

tools supporting one or multiple of these techniques provide always the same kind

of information. They deliver references to the lines in source code that represent a

perfect match to the feature in question. E.g. when a developer searches for the term

“Person” in the source code of a program using “grep” function, he would get all line

of codes where this term occurs. Some sophisticated IDEs (e.g. Eclipse) might allow

the developer to provide additional meta-information about the searched item. E.g.

he might define that the term should be searched only among class names and thus,

the tool would deliver only classes having the term “Person” as part of their names.

The assistance provided by these techniques is very “source code-intensive” and could

not present an infrastructure for reasoning about or analyzing different features and

their relationships at the same time. Therefore, multiple researches were concerned

with creating a more helpful static presentation of features. Robillard and Murphy

[24] developed a Concern Graph as an abstract model for programs that should help

documenting and analyzing features (concerns). Few years later, Chen and Rajlich

[6] proposed another graphical representation of source code called Abstract System

Dependence Graph (ASDG) aiming at helping developers during the feature location

task.

2.3.1.1 Concern Graph

Robillard and Murphy [24] proposed the Concern Graph approach, a structure-oriented

feature representation. It is intended to provide a better ”feature description based

on the relevant program elements and their relationships” [24]. The Concern Graph

presents an abstract code model by omitting implementation details. It focuses mainly

on dependencies between code elements which makes the overall implementation of a

feature more understandable to a developer.

Requirement-to-Code Traceability 14

Object-oriented paradigm defines a very clear program’s structure. Event with most

complex function implementations, the code remains relatively easy-to-overlook in a

way that code elements (classes, methods, and fields) and the interaction between

them can be identified and classified with minimal effort. The concern graph concept

uses this basic idea to provide a formal model of programs. A concern graph is defined

as P = (Vp, Ep), where V p is the set of vertices, and Ep is the set of labeled directed

edges e = (l, v1, v2) [24]. A vertex is representing exactly one of three code types: Class

Vertex ”C” (global class without considering its fields or methods), Field Vertex ”F”

(field of a class), or Method Vertex ”M” (method of a class). Edges in P are reflecting

calling relationships in the source code by connecting vertices of calling elements to their

respective called elements’ vertices. We identify six types of edges: (M,M), (M,F),

(M,C), (C,C), (C,M), and (C,F). Figure 2.2 shows a concrete representation of a

simple Multiplier class. The edges are additionally labeled with tags referring to the

semantic relationships between elements. E.g. a ”calls” tag from method product() to

method sum() means that the method product() is directly calling the method sum().

In the same way, a model representation of the complete program would be created.

Figure 2.2: formal representation of a Multiplier class [24]

A Concern Graph would include only vertices of elements related to the implementa-

tion of a specific concern and the edges connecting them. Usually, commercial software

products have multiple interconnected concerns. The graph presentation P of a pro-

gram should incorporates all its implemented concerns (features) in order to provide

an appropriate presentation of the entire program. Each concern will be presented by

its own Concern Graph similarly to the Multiplier example (see Figure 2.2) which is a

compact subset of the graph represented the entire program. In the complete program

graph, there are two types of vertices. One type encloses vertices which are shared be-

tween multiple compact graphs. They express shared code elements between concerns.

These vertices designate usually the part-of relationship among concerns. In case of

removing a feature, we would have to keep the shared code elements because they will

be needed by other concerns. The second type encloses the vertices which are specific

for a single feature, and hence they are only available in its concern graph. These are

Requirement-to-Code Traceability 15

known as all-of vertices. They do only exist for that feature and if we would remove the

feature, we could also remove them without influencing other concerns. Robillard and

Murphy [24] define a Concern Graph of a feature ”i” formally as Cp,i = (Vp,i, V
∗
p,i, Ep,i)

of a Program P = (Vp, Ep), where Vp,i and V ∗
p,i are respectively distinguishing between

part-of and all-of vertices. Ep,i designates the edges subset from (Ep) connecting the

Vp,i vertices. For simplicity, the details that could be unambiguously derived from P are

omitted. E.g. An all-of class vertex and the edges connecting it could be automatically

derived from its methods vertices and thus, there is no need to add that class vertex

to V ∗
p,i or its edges to Ep,i. Omitting this kind of information should keep the concern

graph relatively compact and manageable.

Figure 2.3: Concern Graph of the Multiplier class [24]

Considering our example from Figure 2.2as a formal representation of feature for mul-

tiplying numbers, we would generate a Concern Graph as in Figure 2.3. The graph

shows addition meta information (all-of) that should help the developer understand

the importance of code elements for the actual concern. Information that seems to be

obvious (e.g. Multiplier declares the field product) or that could be derived automat-

ically (e.g. method product(int x, int y) reads-writes filed product) are omitted

in order to keep the graph as compact as possible. The developer could generate these

graphs automatically and expand them later with additional meta-data details. He

should consider the tradeoff between compactness and expressiveness of the concern

graph. Striving for simplicity should not deteriorate the understandability of the graph

for other user.

2.3.1.2 Abstract System Dependence Graph

In the early 90’s, Ottenstein [28] proposed the procedure dependence graph (PDG) for

non-object-oriented programming languages, such as: C . . . It introduces a graphical

presentation for single procedures. The vertices represented code elements which are

either single statements or sets of statements. The edges, on the other side, represented

to dataflow between the different code elements in the vertices. Few years later, the

Requirement-to-Code Traceability 16

system dependence graph (SDG) [1, 14] was proposed by combining several PDGs.

Additional edges were introduced in order to model function calls and parameter passing

between procedures.

Unfortunately, SDG is very granular and contains more details than needed for features

location purposes. Chen and Rajlich [6] proposed to reduce the details level and make it

more abstract. They introduced the abstract system dependence graph (ASDG) which

is a less granular subset of the original SDG. Vertices symbolize as usual the code

components (sets of statements selected by a developer). They also distinguish between

two types of edges: call edges that designate a conventional procedure call; and data

flow edges that designate a global variable access (read or write). Although, both

SDG and ASDG are very similar and could be build in the same way (using the same

algorithm), the automated support is be very limited. The developer have a central

role taking decisions about the graphs’ structure.

Figure 2.4: System Dependence Graph building process [6]

Building an ASDG begins by selecting a starting code element (component) in the

source code. Usually, this would be the starting function main() of the program. Then,

the developers selects a next component to visit in order to expand the graph. At each

built vertex, all other code element (including global variables), that are reached by the

current code element, must be directly connected. The programmer has to be sure that

all neighboring code elements have been found and connected. A parallel temporary

Search Graph could be built in order to keep track of components that are already

selected and connected. This process will be done recursively until all components are

selected (goal state). A tool might assist the developer during this task allowing him

to undo and redo some of his decisions. Figure 2.4 depicts a more detailed process for

building ASDG from source code. It also distinguishes between the tasks that should be

done by a programmer from those that could be performed automatically by a tool.

Requirement-to-Code Traceability 17

2.3.2 Dynamic

Instead of static code analysis as in static techniques, the dynamic traceability tech-

niques are analyzing programs at runtime. The information acquired from programs

behavior at runtime should also help identifying the code responsible for given require-

ments. Software products are usually tested by running automated or manual unit

tests. The automation level of tests depends on the kind of function being tested.

Background functionalities (e.g. testing a calculation for correctness) are easy to au-

tomate because they do not need any user interaction. Manual functionalities (e.g.

user interface testing) require user intervention and hence they are hard to be fully

automated. Commonly, a program will be executed in order to verify the operability of

its functions. Each requirement would be tested by automatically or manually calling

the functions implementing it. Multiple unit tests could be invoked in order to cover a

single system requirement. But in all cases, each unit test runs only a specific part of

the system that we call an execution slice [28]. The piece of code implementing a cer-

tain requirement could be intuitively identified by comparing execution slices resulting

from unit tests related to that requirement. The execution slice delivers a set of code

elements that have been executed during the test. Comparing that set of elements with

elements acquired from other requirements testing should identify the elements that

exclusively needed by that requirement.

Based on this simple idea of execution slices, Wong et al. [28] proposed an algorithm

for locating requirements implementation in the code. The algorithm consists of three

steps:

1. Find the set of tests that invoke the components implementing a feature F (in-

cluding tests that are shared with other features).

2. Find the set of tests that exclude components implementing F . Some tests could

just exclude few components and not all of them.

3. Subtract the excluding set from the including set in order identify the elements

that are uniquely related to F .

The first and second steps are the most difficult. The software analyst should be aware

of many details about the requirements in order to be able to select unit tests that

include or exclude a certain feature. The features themselves could be described in way

making them hard to be separated from each other. Some features could be composed

of smaller “sub-features”. When we subtract sets of executed code elements, we should

consider the coverage of the selected tests over the requirement in question. Especially,

the exclusion tests have to be “absolutely” excluding a requirement and not only few

Requirement-to-Code Traceability 18

aspects of it. Otherwise, the subtracted elements would be not only omitting foreign

code but also code elements implementing the requirement under study. Therefore, the

first and second steps of the algorithm must be carefully performed. Poorly selected

unit tests might lead to inaccurate or even wrong results.

Whether the unit tests are fully automatic or manual, the execution information must

be recorded when running them. Depending on the programming language used, there

are different technologies that could be applied for this purpose. e.g. Java has a

very sophisticated debugging interface which allows to record methods call information

without changing the original source code. Wong et al. [28] used χV ue for the C

programming language. χV ue instruments the code and builds an executable version

of the program with logging statements that should gather information about code

elements at runtime. The thirds step of a algorithm will use the information about

each test from the execution log. The set of code elements called at runtime for a

certain requirement will be subtracted from code elements that were also called by

other requirements’ tests.

Unit testing is a common practice in software development. The main effort needed

for the dynamic feature location technique would not reside in creating unit tests but

rather the careful selection of the appropriate ones in order to make ideal execution

slices for subtractions. In some cases, this operation makes the developer aware of miss-

ing test scenarios which she has to retroactively implement them. The overall effort

needed is still acceptable and beneficial, which is a big advantage counting for this tech-

nique compared to static approaches presented in previous section . Furthermore, the

dynamic approach could be fully automated depending on the kind of features being

analyzed. Many functional features are usually called internally without requiring a

human interaction. Furthermore, recording the execution information for such feature

would not require manual intervention as the case in static techniques. The only draw-

back that we could identify is that the accuracy of the results is directly proportional

to the quality of selected tests. We might miss code elements implementing a certain

feature just because we did not select the appropriate tests for it. In other words, we

risk having problems with the completeness of the unit tests and the coverage they

provide to the tested features.

2.3.3 Textual

Both static and dynamic techniques mandated specific knowledge about the system in

question. Although, they reduced the overall effort needed for traceability, new burden

manifested when realizing these technique for industrial use. There are major imped-

iments for a general acceptance of these practices. None of the techniques presented

Requirement-to-Code Traceability 19

in previous sections was able to guarantee a certain level of accuracy. Multiple recent

researches have focused on creating metrics to measure the success of their techniques

relatively to others. At the same time, increasing the automation of both: the creation

and maintenance of traces, remained very important goals of every new technique. As

text mining and information retrieval (IR) showed a very good success in automati-

cally extracting information from textual data, it was a very obvious step to try them

also apply them for traces recovery. The source code and requirements documentation

are -after all- textual data. We found multiple traceability approaches based on Infor-

mation Retrieval (IR). Antoniol et al. [2] presented a method to recover traceability

links between source code and text documents based on a previous study [1] about

the different IR probabilistic models. Huffman Hayes et al. [14] proposed a method

for improving candidate traces generation using IR. In this section, we will cover the

general concept of IR approaches and present a sample model that has been used in

several techniques.

2.3.3.1 Information Retrieval

Information Retrieval techniques are concerned with providing systems for retrieving

documents relevant to a given query from a large documents database. The docu-

ments are commonly indexed and classified before storing them into the database. The

common indexing process is as follows:

1. Each document is transformed into a character stream by removing non-textual

(e.g. punctuation, pictures...) content.

2. The resulting text will be lexically analyzed in order to separate the different

tokens (terms) from each other.

3. Stopwords (e.g. the, and, or...) are eliminated. The list of stopwords is language

specific and could be shortened or extended depending on the requirements of the

system.

4. Terms are normalized using a Morphological Analysis (also called stemming);

e.g. context dependent terms, such as: “retrieve” and “retrieval”, are unified to a

context independent root term “retriv”.

5. Thesaurus is applied for identifying synonyms and homonyms.

Requirement-to-Code Traceability 20

6. Each term will be weighted by calculating a numeric weight value usually based

on the occurrence and/or frequency of that term in the given document or all

documents in the database.

In a IR system, the user formulates a query in human language and expects the system

to deliver the documents meeting his request. Matching documents to a query are said

“relevant”. IR systems have different probabilistic models to calculate the relevance

of documents in the database to the given query. The relevance of each document is

computed from the likelihood of terms occurring in the query and the document. The

relevant documents are selected from the database and ordered based on their probable

relevance. The simplest model is to select documents containing the same terms as in

the query and then to order them depending on the weights and number of occurrences

in each document. But there are other more sophisticated probabilistic models applied

for retrieving and ranking the documents, such as: Latent Semantic Indexing (LSI) and

Vector Space Retrieval (VSR).

Terms weighting has a very important role in IR. It is the main parameter used for the

retrieval as well as the ranking of documents. The ranking is intended to put the most

likely documents in the top of the list of retrieved documents. This is intended to let

the user find the information that he is looking for more quickly. Term frequency (tf)

and inverse document frequency (idf) are well known terms weighting metrics in IR.

The term frequency tfi,j represents simply the number of times a term j is appearing

in a document Di. The inverse documents frequency idfj designates the inverse ratio

of documents containing the term j over the entire set of documents. The concept

of using idfj is that the more documents where a term appears, the less important it

is, and vice-versa, the less document containing that term the more important it is.

Formally, idfj is defined as:

idfj =
TotalNumberofDocuments

NumberofDocumentscontainingthejthterm
(2.1)

The quality of an IR approach is measured by the relevance of the documents it returns

when a query is called. The relevance is commonly expressed by two metrics, namely

Precision and Recall. Recall is the ratio of the retrieved relevant documents for a given

query over the total number of relevant elements for that query (see equation (2.2) on

page 21). Precision is the ratio of the retrieved relevant elements over the total number

of retrieved elements (see equation (2.3) on page 21)). Both metrics are commonly

mapped to values between 0 and 1 which can be displayed also as a percentages. The

higher the value, the better quality the metric does designate. i.e. A higher recall

value for a query means that a higher number of relevant elements for that query are

retrieved; A higher precision for a query result means that a higher number of the

retrieved elements are relevant for that query.

Requirement-to-Code Traceability 21

Recall(Queryi) =

∑
i #(Relevant ∩Retrieved)∑

i #(Relevant)
(2.2)

Precision(Queryi) =

∑
i #(Relevant ∩Retrieved)∑

i #(Retrieved)
(2.3)

Figure 2.5: IR traceability recovery process [2]

We believe that IR techniques can help recovering traceability links between the source

code of a system and its documentation. However, this could not be possible if the code

does not contain meaningful terms that could match the documentation’s terminology.

Indeed, the code and documentation of application share the same domain knowledge

and consequently, they should deploy the same, or similar terminology. Antoniol et

al. [2] presented a method that uses classes identifiers (e.g. class name, field names,

method names. . .) as query terms to retrieve the documents relevant to a particular

class. They employed a vector space model to weight terms in the documents and

rank the documents later when they are retrieved. The overall process of traceability

recovery is depicted in Figure 2.5. The figure consists of two paths: the upper one

does extract the query from the source code, and the lower one is about preparing the

documents for retrieval. Both paths end at a common classifier which is responsible

for calculating the similarity between queries and documents. The classifier creates the

final ranked list of relevant documents.

The lower path in Figure 2.5 is a common process for indexing text documents as

defined by conventional IR techniques. The upper is, however, more specific for the

traceability approach. The final part about indexing the documents and the queries as

well as ranking the results would be implementing a particular IR model. Antoniol et

Requirement-to-Code Traceability 22

al. [2, 1, 3] applied different probabilistic models using this same architecture. They

analyzed the effect of each model by adapting the classifier and indexers from at the

end of the process. In this work, we refer to the vector space model presented in the

paper [20] as an example application.

2.3.3.2 Example IR Model: Vector Space Model

In a vector space model, each document and query are mapped to a vector in an n-

dimensional space, where n is the number of terms in the vocabulary extracted from

all documents. Each vector is represented by an n-tuple corresponding to the weights

of terms in the vocabulary. E.g. if we have the vector [di,1, di,2, . . . di,n] representing a

document Di, and di, 1 corresponds to the weight of the first term in the vocabulary.

The weight of terms could be computed in different ways. The simplest case would

be using Boolean values where 1 means that the term occurs in Di and 0 otherwise.

Antoniol et al. [1] applied a vector model specific weight value which is derived from

tfi,j and idfj (see previous section). For each document Di a weight di,j is calculated

for each term j as follows:

di,j = tfi,j × log(idfj) (2.4)

There is a basic concept in IR that says: “The more the word is specific to a document,

the higher the weight it should get”. In order to implement this concept, the log(idfj)

is acting as a normalization factor for the term frequency tfi,j in the document Di over

the entire set of documents in the database.

The query is similarly represented by a vector [q1, q2, . . . qn] mapping its terms to the

vocabulary retrieved previously from all documents. But, the terms that are found in

the query and not in the vocabulary are simply ignored. In the case of Antoniol et al.

[1], each query Q is composed of identifiers extracted from a class. The relevance of a

document Di to Q is computed by a similarity function that calculates the cosine of

the angle between their corresponding vectors in the n-dimensional space:

Similarity(Di, Q) = si,Q =

∑n
j=1 di,jqi√∑n

h=1 (di,h)2 ×
∑n

k=1 (qk)2
(2.5)

The similarity value is also used as a relevance metric. When we call a query on the

database, the similarity value will calculated for each and document in the database to

that query. The higher the similarity value, the more relevant the document could be.

Therefore, the documents will be ranked in a list by their relevance to the query. The

most relevant ones must be on the top of the list. This strategy is, however, useless

for a software analyst. On the one side, the complete list of documents (requirement

Requirement-to-Code Traceability 23

descriptions) would be annoying for the user even when they are ordered. On the other

side, the operation of returning all documents is very resource intensive and could be

inefficient. Antonio et al. [1] used a threshold parameter which is a common practice

in IR techniques. The threshold defines where to prune the ranked list for a given

query. The documents with a similarity value less than the threshold are ignored.

The threshold is usually defined as a percentage relative to the best similarity. E.g.

if we have a query result with a maximum similarity value of 0.60 and a threshold

of 30%, than we return all documents with a similarity value greater or equal 0.42

(= 0.60− (0.60× 30%)). The threshold sets a tradeoff between precision and recall of

the returned results.

The vector space approach was tested [1] on two example projects (LEDA and Alber-

gate) and proved that it was able to retrieve most of the relevant documents (100%

recall) at a certain threshold. The precision was, however, decreasing with the increas-

ing recall. E.g. for LEDA 4 library (Library of Efficient Data Types and Algorithms)

project 100% recall was reached with 3.92% Precision: 2496 documents were retrieved

but only 98 from them were really relevant to the given query. In this case, the user

has to manually validate 2398 wrong traces in order to get all correct ones.

2.3.3.3 IR as a Traceability Approach

Information retrieval has many advantages compared to other techniques. The main

advantage is that IR requires only textual input without any additional knowledge.

Indeed, there are a lot of textual artifacts in software products (e.g. code, documen-

tation. . .) that might support such techniques. The IR approaches are very useful,

especially, when there are no former developers to help analyzing and tracing a pro-

gram. E.g. many systems are often no longer supported by the original companies and

the clients find themselves hiring new software analysts and developers in order to fix a

problem or extend existing features. IR represents best possible help in such cases. It

generate candidate links between code and documentation that should help developers

finding the implementation of certain functionalities. The developer would be able to

at least identify an entry point to understand the structure of the system, even though

the retrieved links are not all correct.

Information retrieval is obviously reducing the size of the information used to be manu-

ally processed when retrieving traces between code and documentation (requirements).

But despite the high automation of this technique, a software analyst is still needed

to validate the proposed candidate links. Only human cognitive capabilities is able to

confirm or reject a requirement-to-code trace. The results returned by an IR approach

4http://www.cs.sunysb.edu/~algorith/implement/LEDA/implement.shtml

http://www.cs.sunysb.edu/~algorith/implement/LEDA/implement.shtml

Requirement-to-Code Traceability 24

might reach very good precision and recall. It is, nonetheless, impossible to automati-

cally eliminate all erroneous links. Considering the advantages of IR, many researchers

took the challenge of using it to improve traceability approaches. E.g. Hayes et al. [14]

proposed an approach that enhances the IR process at two levels: on the one side, they

introduced a thesaurus in order to unify synonyms and improve the query semantic;

on the other side, they considered the interdependency between queries in order to

build relationships between queries. They assumed that the queries should have inter-

nal relationships similarly to code elements. The results proved to be very promising.

Unfortunately, we cannot compare between the improved approach of Hayes et al [14]

and the previous approach proposed by Antoniol et al. [1] because each research team

included a different data set for testing. A comparison based on different data sets

would be unfair.

The application of IR has also multiple limitations. First of all, IR techniques requires

a huge amount of textual data in order to deliver reliable results. It expects to be fed

with a big number of documents when using it for conventional text search tasks. In

software projects, getting such an amount of textual data is possible only with medium

and big projects. This technique could be completely unreliable for small projects. Fur-

thermore, source code and requirement documentation must share meaningful names

in order to find matching links between them. But, the naming convention is not al-

ways trivial to developers. Many developers work on the implementation of software

products without even reading the requirements documentation. Usually, developers

get their tasks from a manager who is aware of all details related to the requirements.

The developers do not need to read the documentation individually. Thus, the termi-

nology used in the source code would be directly depending on the instructions that the

developers get from their manager. An implicit “common sense” of selecting identifiers

when implementing a software product is often not enough to get an optimal textual

similarity between the documentation and the source code. Nowadays, many big com-

panies are aware of the importance of naming conventions and they define very strict

naming conventions for such purposes.

2.3.4 Hybrid

The research in traceability area exploited many techniques from different types: static,

dynamic, and textual. Although, each technique proved to be useful in some ways to

capture or recover requirement-to-code traces, their accuracy is still to not convincing

enough and have to be improved. Researchers decided to make hybrid techniques by

combining several existing ones. They exploited the benefit from some combinations

and how they would improve the quality of results compared to individual techniques

separately.

Requirement-to-Code Traceability 25

In this section, we will present two hybrid approaches using different combinations,

namely SNIAFL [29] and CERBERUS [10].

2.3.4.1 SNIAFL

The SNIAFL approach was proposed by Zhao et al. [29] in 2004. It is a software anal-

ysis process aiming to locate feature in the source code by combining the information

retrieval (textual technique) with a static analysis technique, called Branch-Reserving

Call Graph (BRCG). BRCG was initially developed to detect use cases of a program

from source code [23]. The BRCG was intended to enhance system comprehension

rather than locating features in the code.

Zhao et al. [29] define the BRCG as an extended form of a call graph. In addition to

call relationships between functions (methods), it includes further information about

branch statements. A branch statement is a code statement that creates a branch

in the logical structure of the program. For example, an if-statement in java starts

explicitly a new branch in the flow of a program with a curly bracket “{” and closes

it by closing the bracket “}” again. Some programming languages (e.g. Java) allow

defining implicit branches (without delimiting braces). Analogically, other statements,

such as: case-statements, loop-statements. . . define also their own branches.

Figure 2.6 shows a BRCG for a sample java method foo(). The nodes in the graph

are representing either a function (method node), a branch statement (Bi node), or a

return statement (RS node). The relationships between nodes are classified whether

as branching relationship, which designates the begin of a sub-branch, or a sequential

relationship, which designates the sequential call of functions. They have always a

relationship that connects them to each other. They cannot be directly connected to

each other. Branches that are created by loop statements (e.g. while, for. . .) are

handled as sequential relationships. The BRCG of an entire system is built in a similar

way. The root node of a BRCG representing the entire system would be the entry

method of the program (e.g. main() method in java programs). Usually, graphs of

single methods are created first, and then they will be connected to each other in order

to create an entire system representation.

SNIAFL proposes a process with four main steps in order to recover traces from IR

information combined with the information gained from BRCG (see Figure 2.7):

1. Acquire Initial Specific Connections between Features and Functions

In this step, IR is applied to recover initial candidate traces between features and

functions (methods). The approach uses the vector space model, which we have

Requirement-to-Code Traceability 26

Figure 2.6: A Sample BRCG: Source Code (left) Vs. BRCG (right) [29]

already explained a previous section, for indexing and ranking documents. This

approach relies, however, on filtered data. On the one side, the document set

does not constitute of documentation pages , but rather of selected paragraphs

describing single features. The concept of document in IR techniques is equiva-

lent to a feature description in this case. Each feature will be represented by a

paragraph written in human language. The description could be acquired from

the requirement documentation of the system or from an expert who has enough

knowledge about the requirement. On the other side, the query set is prepared

from methods (functions) instead of classes. The set of identifiers (including the

name of the method) appearing in the body of a method are extracted automat-

ically and grouped into a function description that will be used as query. After

preparing all documents and queries, initial connections (initial candidate traces)

are retrieved by running each query on the documents set. This operation will

select and rank the set of documents (feature descriptions) by their relevance to

each query (function/method). The result list could also be empty if the simi-

larity function does not return positive values for any feature description in the

documents set.

2. Identify Initial Specific Functions

After identifying candidate feature descriptions for each function, we associate

functions with their candidate features. In this way, we inverse the relationship

Requirement-to-Code Traceability 27

Figure 2.7: The Process of SNIAFL Approach [29]

between them and create new lists of candidate functions implementing each fea-

ture instead of candidate features describing each function. The similarity value

calculated by the vector space model in previous step is also used to sort the func-

tions by their relevance to the feature descriptions in a descendent order. Further-

more, a rank distance will be calculated between each two successive functions.

The position where the biggest rank distance occurs in each list is considered as

the best point to prune that functions list. The resulting lists are shorter and

contain only most relevant functions. These are initial specific functions that are

more likely to have trace connections to input features.

3. Determine Relevant Functions & Traces

In this step, a BRCG is created from source code. It will be reduced to the specific

functions that have been identified as relevant in previous step. Every branch in

the BRCG containing irrelevant functions is pruned. The resulting graph should

contain only functions relevant to features. After that, both functions and features

are summarized in a requirement trace matrix (RTM) where the rows denote the

features and the columns denote the functions. Each function that is relevant to

a single feature will be assumed to be tracing to it and a trace tag (in this case

1) will be inserted in the corresponding cell in the array. All other functions,

including those that are shared between multiple features, are tagged in the array

Requirement-to-Code Traceability 28

as not tracing (a 0 is set in the corresponding cells). The final functions and

traces are designated by the cells with the trace tag “1”.

4. Determine Final Specific Functions

Pseudo execution traces are generated from the reduced BRCG by traversing each

possible path in the graph starting from the root. Every function with an assigned

trace to a feature will propagate its traces to the following functions on the same

execution path. Thus, the final RTM will be filled automatically with addition

candidate traces. The effort required for this operation is directly proportional to

the size of the input BRCG. Handling a big BRCG might be a resource intensive

task.

The approach was tested [29] on an example system that also has been analyzed with

bare information retrieval technique and dynamic technique separately. The IR re-

sults were very poor and did never exceed 50% for either precision or recall. The

dynamic approach was inspected with different types of unit tests: insufficient tests

and well-designed tests. In either cases, the dynamic analysis performed better than

IR, especially with the well-designed unit tests. The precision and recall metrics have

shown that the SNIAFL approach could perform better that all other approaches. The

values of precision and recall exceeded those acquired with other approaches in all test

cases.

Despite the good quality of retrieved traces, SNIAFL has a serious drawback: the

approach is very resource intensive and not scalable . The main problem occurs when

generating the pseudo traces from the BRCG. During that task, the system needs to

keep too much information in the memory at the same time in order to avoid duplicate

traces. For big systems, this approach might be unrealizable on a desktop computer

and would need a power computer with more memory and calculation capacities. We

should, nevertheless, admit that the quality of traces acquired from this combined

technique surpassed the quality of individual techniques separately.

2.3.4.2 CERBERUS

CERBERUS [10] is another example of hybrid traceability techniques. It combines all

three types: static, dynamic, and textual technique. The static technique is realized

by the prune dependency analysis which has been developed by Antoniol et al. [10] for

programs’ structural analysis. The dynamic technique and textual technique are based

respectively on execution tracing analysis and information retrieval.

Requirement-to-Code Traceability 29

A prune dependency relationship is defined between a program element and a require-

ment (concern) when following rule is satisfied: “A program element is relevant to a

concern if it should be removed, or otherwise altered, when the concern is pruned” [10].

In other words, the prune dependency relationship between a requirement “r” and a

code element “er” exists if removing the requirement “r” would induce the removal or

change of the element “er”.

The prune dependency analysis (PDA) is supposed to find such prune dependency

relationships in a program. As input, PDA expects a set of initial relevant elements to

a requirement and based on their relationships in the proposed program, PDA infers

additional relevant element. The initial set could be manually created by a software

analyst or automatically retrieved by another technique. Formally, PDA’s input is

defined as a tuple (G,R,A) for each requirement. G is a directed graph that expresses

the structure of code elements in the program and three types of dependencies between

them: references dependencies (e.g. calling references), contains dependencies (e.g.

class Multiplier contains a method product()), and inherits-from dependencies (e.g.

class inheritance in java). The graph G is common for all requirements and will be

created only once. R is called the removal set and it contains the set of initial relevant

elements that have to be removed when a given requirement is pruned. A is the alter

set. It will be filled with the elements that should be changed when pruning the given

requirement. In contrast to graph G, R and A are depending on a specific requirement.

Basically, the alter set A will be filled during the process and the user does not need to

define it as the case with the removal set R.

Figure 2.8: Overview of the CERBERUS approach [10]

The prune dependency analysis runs multiple times over the given graph G and simu-

lates the removal of each requirement separately. The process starts from the predefined

Requirement-to-Code Traceability 30

initial relevant elements and analyzes their neighboring elements recursively. Assum-

ing that the initial relevant elements are correct, the process classifies neighboring code

elements into removal or alter set. The process applies following checks on visited code

elements:

1. If the current element has dependencies only on elements in the removal set, it

will be inserted in the same set and will be considered as an element that should

be removed when pruning the requirement.

2. If the element has dependencies on elements in the removal set as well as other

elements, it will be considered as a shared element with other requirements. It

might be necessary to change it when pruning the requirement. Therefore, these

elements are inserted into the alter set.

3. If no direct dependency on elements in the removal set was detected, the element

will be ignored.

The final relevant elements are the union of both removal and alter sets. These ele-

ments are supposed to be the code elements implementing the requirement in question.

Figure 2.8 shows a detailed overview of the CERBERUS approach. The initial relevant

elements are extracted using execution tracing (dynamic) and information retrieval

(textual) techniques. Each technique will be performed separately and deliver a ranked

list of possible relevant code elements. Then, results from both approaches are com-

bined into a single ranked list of initial relevant elements that represents the removal set

R for the prune dependency analysis. At the same time, the graph G will be automat-

ically generated from the program source code. As soon as G and R are computed for

a requirement, PDA will analyze G in order to determine the final relevant elements.

The dynamic analysis applied in this approach is very similar to “execution slices” (see

section 2.3.2 on page 17). The execution slices technique was extended with a ranking

mechanism in order to adopt it in this approach. Multiple metrics are applied to create

a reliable raking mechanism. For example:

• Software Reconnaissance (SR) [26] of a code element is a Boolean metric that

takes the value 1 if the element is triggered (called) at runtime by a unique

requirement and 0 otherwise.

• Dynamic Feature Traces (DFT) [4] of a requirement is the ratio of elements trig-

gered when executing that requirement from total number of elements triggered

at runtime.

Requirement-to-Code Traceability 31

• Scenario-Based Probabilistic Ranking (SPR) [12] of a code element is the ratio of

unit tests of a specific requirement triggering it from total unit tests executing it

(including unit tests of other requirements).

• Element Frequency-Inverse Concern Frequency (EF-ICF) [10] is similar to tf−idf
(term frequency and inverse document frequency) in information retrieval. EF-

ICF is defined as:

IF − ICF =
#elem triggered by the req

total#elem triggered
× log

(
#reqs triggering any elem

#reqs triggering current elem

)
(2.6)

The CERBERUS approach was verified with Rhino 5 which is an open-source implemen-

tation of JavaScript written entirely in Java. Rhino is implementing the ECMAScript

international standard 6 (ECMA 262 specification) . Antoniol et al. [10] considered it

as a requirements documentation for Rhino, and decided to retrieve the Rhino require-

ments definition from that standard specification. The ECMA specification was very

well organized. Each function was described in details in a separate section. Antoniol

et al. [10] proposed taking each leaf sections (a sections without further subsections)

from the specification as a requirement description. The IR application used these de-

scriptions as queries over the set of code elements which are considered like a document

set. The relevance elements are identified and ranked using a conventional vector space

model (see section 2.3.3.2 on page 22).

The initial goal for combined techniques is improving the quality of retrieved traces. It is

important to measure the gained quality over using different techniques individually. In

addition to precision and recall metrics, the effectiveness of CERBERUS was measured

with the weighted harmonic mean of precision and recall, namely f-measure:

F =
2 . precision . recall

(precision+ recall)
(2.7)

Instead of using precision and recall, the f-measure summarizes the effectiveness of the

system in one single metric. The f-measure is, however, still specific to single require-

ments. Antoniol et al. [10] considered computing the mean recall, mean precision, and

mean f-measure metrics that represent the respective averages of recall, precision and

f-measure among all requirements in Rhino. They also tested all different combinations

of the three applied techniques (Information retrieval, dynamic analysis, and PDA).

The test cases included single techniques and combined ones (two by two). This is

necessary to compare the quality acquired from CERBERUS with other possible tech-

niques. As expected, The hybrid techniques did nevertheless perform better than single

5http://www.mozilla.org/rhino
6http://www.ecma-international.org/publications/standards/Ecma-262.htm

http://www.mozilla.org/rhino
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Requirement-to-Code Traceability 32

technique. CERBERUS did outperform almost all other techniques individually and

combined. The only exception was with the combination of IR and PDA. It has al-

ways had a very close effectiveness to that of CERBERUS and it did even outperform

CERBERUS in few cases.

2.4 Trace Validation

While the relationships between traces and calling relationships in the code have been

explored in the past [22, 10], they have never been exploited together with potentially

erroneous traces for validation. Indeed, the strongest motivation for our work comes

from a study by Kong et al. [18] who conducted an experiment about manual trace

links validation. Many software analysts participated in validate existing trace links

and retrieve missing ones if possible. The participant analysts were senior and graduate

students in computer science and software engineering from two universities: the Uni-

versity of Kentucky and Cal Poly University. Each of the participants had to validate

a number of trace links from given Requirements Trace Matrices (RTM) which were

retrieved automatically using Information Retrieval.

The validation of traces is simply the task of checking traces for correctness. The

participant analysts have to look at each available trace and decide whether to confirm

or to reject it. A basic tool support was also provided in order to record the behavior

of each analyst during the experiment. The tool, called RETRO, tracked multiple user

actions and logged them into an external file for later analysis. The logs included various

detailed information, such as: time stamp, action type (keyword search, selection. . .)

In order to evaluate the decisions taken by each participant, a research team generated

in advance a golden standard RTM which represents the best accurate RTM. The

quality of an RTM is usually measured using Precision and Recall. Higher precision

means a higher number of traces in the RTM are correct. A higher recall means that

the RTM contains a bigger set of the possible traces. In our case, we assume that the

golden standard RTM is our “yardstick” with 100% precision and 100% recall. The

accuracy of validated RTMs will be measured relatively to it.

The experiment [18] was conducted with 13 participants. Each of them had to validate a

different candidate RTM with a different accuracy levels (different precision and recall).

The candidate RTMs are generated in advance. Each RTM had a certain number of

correct and incorrect traces. Meanwhile, participants worked on rejecting incorrect

traces and confirming correct ones, the supporting tool recorded the details of analyst’s

work in external log files. The principal idea of the experiment is to understand the

Requirement-to-Code Traceability 33

human behavior during validation task by analyzing the recorded logs. The log analysis

helped identifying multiple strategies used by the participants to accomplish their task.

For example: some participants did most of the time review all links before taking

any decisions; other participants took decisions about traces that seemed to be obvious

before reviewed all traces; some others consulted available traces first, then searched

for keywords before taking their first decision. . . The analysis of these logs should help

answering important research questions, such as: How much source elements did a

participant read before taking a decision about the correctness of a trace? How much

time was spent searching for links? At which stage of the task did the analyst face the

most difficulty?

Figure 2.9: Performance of the 13 study participants plotted in the precision-recall
space [18]

Logs analysis revealed few important observations. Six of the participants started

slowly with a number of incorrect decisions before they stopped making mistakes after

a certain time. In average, they spent at least 20 minutes until they started identifying

correct traces. Half of the participants were reviewing all links during the earlier stage

of the task, which explains the delay in reaching good decisions. Other four participants

were able to locate correct traces earlier in the experiment making only few incorrect

decisions throughout the task. Compared to the other participants, these four analysts

Requirement-to-Code Traceability 34

were able to get past the hurdle quickly and were able to go faster through candidate

traces. A period of “tiredness” was recognized in the work of two other participants.

They started making good decisions before committing multiple mistakes in a row, but

they recovered after a while and were again able to take correct decisions.

Figure 2.9 shows the performance of all participants plotted as vectors in a precision-

recall space. Each vector starts at the initial accuracy (recall, precision) of the candidate

RTM before the validation experiment. It ends at the resulting accuracy after validating

it by a participant. If the manual validation would improve the quality of the matrices,

we would see most of the vectors pointing towards the upper-right corner of the space

where the precision and recall are at their best values (recall = 1, precision = 1).

The participants validating RTMs with poor initial accuracy tended to deliver better

quality RTMs. E.g. a user, who started with a RTM that had only 7 correct traces

out of 35 candidate traces (recall = 0.304, precision = 0.200), submitted a RTM with

15 correct traces out of 28 total correct traces (recall = 0.536, precision = 0.625).

He significantly improved the RTM quality by 34.8% in recall and 33.6% in precision.

Unfortunately, this has not been the case with all participants. Those who started

with a good quality RTM ended up making them worse. Few of them succeeded in

improving the precision or the recall at the expense of the other. This can be seen

in figure 2.9 on hand of vectors pointing from upper-right (best quality) corner to the

bottom-left (worst quality) corner. There are also participants who’ve got very small

RTMs at the start. So, they finished very quickly validating the available traces and

started looking for missing traces with the belief that the given RTM is incomplete.

The newly added traces were in most of the cases wrong and instead of improving the

quality of the RTM, they ended up deteriorating the initial quality.

This experiment creates a fundamental understanding for manual traces’ validation.

We learned that manual validation does not necessarily improve the quality of traces.

Many participant analysts did not succeed in recognizing erroneous traces and they did

even deliver other wrong traces. The quality of traces was always depending on the

quality of initially available traces. When starting with a low quality RTM, participants

did perform well and improved the overall quality of traces. But when they started

with high quality RTM, the results lost remarkably in quality. The analysts delivered,

nonetheless, more trustworthy traces as long as they are exclusively working on a single

task: either trace recovery or race validation. As soon as they start switching from one

to another, they begin taking wrong decisions.

Kong et al. [18] noted also an interesting correlation between code complexity and

quality of traces. This experiment confirmed a previous observation made by Egyed et

al [11] saying that: ”When an analyst spends very little time on a link they tend to make

the correct decision. On difficult links, where the analyst struggles to make a decision,

Requirement-to-Code Traceability 35

they frequently commit to the incorrect decision” [18]. Both studies were performed

independently, what emphasizes the conclusion that spending more time on some code

locations does not necessarily deliver better traces. It is rather the complexity of the

code that makes it understandable and easy to trace or not.

The experiment reveals important aspects of manual traces validation. There are how-

ever few concerns that are worth to discussing. The experiment could be biased due to

the Hawthorne effect: ”It is a form of reactivity whereby subjects improve or modify an

aspect of their behavior being experimentally measured simply in response to the fact

that they are being studied.” It is impossible to confirm that the behaviors observed

during the experiment are covering all possible human behaviors during a manual traces

validation. The experiment could also be influenced by other human factors, such as:

familiarity with the code, experience with different projects. . . The observed aspects

are, nevertheless, very realistic, and hence we consider them as a good simulation for

real world behaviors.

Hypothesis of Surroundedness 36

Chapter 3

Hypothesis of Surroundedness

Intuitively, we think that methods implementing a given requirement are somehow

connected in their implementations, and hence traces are not random occurrences in

the source code. If a requirement is implemented in multiple methods, it is, indeed,

intuitive to think that methods implementing that requirement are likely to be calling

each other when executing that requirement. Thus, there should be some kind of

relationship between the different methods sharing the same requirement that we expect

to see in a call graph. e.g. we expect to see the callers and callees of a given method

are more likely related to the same requirement.

For a program, call graph could be generated in multiple ways. On the one side, there

are static call graphs that are generated out of the structural properties of a program,

such as: concern graph (see section 2.3.1.1 on page 13), or abstract system dependence

graph (see section 2.3.1.2 on page 15). . . On the other side, there are dynamic call

graphs that are generated at runtime depicting executed call relationships between

code elements. In this thesis, we decided to use dynamic call graphs due to multiple

reasons. Compared to static graphs, a dynamic call graph would contain only needed

code and thus, it truncates implicitly dead code and reduces the size of the graph which

would improve the performance of any algorithm running over the graph structure.

In this chapter, we will present the Requirement Call Graph (RCG) data structure

which helped us analyzing and verifying our assumptions and all related issues. But

before, we will introduce the case study systems that we used for the investigation of

our hypothesis which we will present in the last section of this chapter.

Hypothesis of Surroundedness 37

3.1 Case Studies

We are basing our observations on the evaluation of four third-party software systems

(between 3 - 72 KLOC) and 59 randomly chosen requirements. The four open source

projects of different sizes and different domains were:

• VideoOnDemand (VoD) is a MPEG-Decoder library that provide a server-

client architecture for video streaming. It supports basic functions, such as:

starting and stopping a video stream. This project has been reverse engineered

by professional software developers. The resulting source code is a relatively

small with only 3.6 KLOC. The developers did also a manual traces recovery and

provided traces for 14 sample requirements.

• Chess 7 is a simple Swing implementation of the chess game. It runs locally like

any other java application. The user can start a game against the computer or

against another user. The option for online gaming is not yet introduced in the

version that we are using for our experiment. The developer of Chess provided

traces of the main 8 requirements implemented in the test version.

• GanttProject 8 is an open source project planning and tracking tool. It allows

the user to create project tasks in form of charts diagrams and set dependencies

among them. GanttProject, or briefly Gantt, provides basic support functions

for project analysis, such as: computing the start and finish dates of projects

and individual tasks, computing critical path for responsible tasks for delays, and

visualizing bottleneck tasks in the project. It also includes functions for human

resources management. The system is quite large, consisting of 41 KLOC Java

code distributed over more than 500 classes and 3000 methods. We selected 16

example requirements to be investigated in this work.

• jHotDraw 9 (JHD) is a java framework for drawing technical and structured

Graphics. The project was originally an exercise for using design patterns, which

makes it a well-designed project and a good candidate for investigation. The

program has a simple user interface (UI), as usual in painting programs, that

allows to select, draw, and modify graphical elements. This is our biggest test

project with 72 KLOC and 21 requirements.

The basic characteristics of these projects are depicted in Table 3.1. All of them are

implemented in Java. These systems were chosen, in part, because of the availability

7http://www.java-chess.de/
8http://ganttproject.biz/
9http://www.jhotdraw.org/

http://www.java-chess.de/
http:// ganttproject.biz/
http://www.jhotdraw.org/

Hypothesis of Surroundedness 38

of high quality requirements-to-code traces. Particularly for the larger two systems

(Gantt and JHD), the institute for Systems Engineering and Automation (SEA) pro-

vided monetary compensation to lead software engineers in charge of building these

systems to ensure that the RTMs were done well.

VoD Chess Gantt JHotDraw

Programming Language Java Java Java Java
Size in KLOC 3.6 7.2 41 72
Nr. of Executed Methods 173 416 2603 1768
Nr. of Sample Requirements 14 8 16 21
Golden Standard: Size of RTM 2422 3328 41648 37128

Table 3.1: Properties of case study projects.

The available traces are of high quality and therefore we consider them as the golden

standard for our systems. We recall that a golden standard RTM is the best possible

RTM assumed to be completely accurate. Having these RTMs as golden standards was

crucial for two reasons:

1. to conduct our analysis on correct real world examples in order to get trustworthy

observations.

2. to test our approach’s ability to cope with incorrectness by randomly seeding

errors into these RTMs.

R1: Play Single Move R2: Show Score

Game t t
Board n n
Player t n
Control t t
Piece n n
Pawn n n

Table 3.2: Excerpt of RTM from Chess system.

These traces were captured in form of Requirements Trace Matrices (RTM). Each

RTM contains m × n cells where m is the number of code elements and m is the

number of requirements. Table 3.2 depicts a tiny excerpt of such a RTM for the

Chess system. Each cell indicates either a trace (’t’) or no-trace (’n’) as was discussed

previously. A trace in a cell implies that the given code element (row - a class in

this case) implements the given requirement (column). Vice-versa, a no-trace in a

cell implies that the code element is not implementing the requirement. A row in the

RTM thus identifies all requirements that a method implements (or by negation not

Hypothesis of Surroundedness 39

implements). Each column identifies all methods that implement a requirement (or by

negation does not implement). Typically, there is a many-to-many relationship in how

requirements are implemented in code.

3.2 Requirement Call Graph

As was mentioned in the introduction, our approach uses calling relationships among

code elements to help validate the correctness of the given requirements-to-code traces.

How these calling relationships are created is not important in principle. But since static

analysis of source code is typically not able to identify method calls completely, we chose

to observe them dynamically by execution the system. The Java JDK provides an easy

and reliable interface for recording method calls at runtime . No special prerequisites

were necessary for the execution of the systems. We simply tested the systems as

exhaustively as could be. The testing was not limited to the sample requirements

nor was it attempted to test the requirements individually. This was done to avoid

any bias towards particular requirements or usage scenarios. Though, we believe that

structuring the tests towards individual requirements could further improve the quality

of our approach, which is future work . There are standard tools available for recording

execution logs during program execution. Such execution logs are in essence tree-like

structures where each executing thread would be represented by a separate tree, where

methods are nodes and calling relationships are edges (edges are in fact implied through

the hierarchical embedding of methods inside other methods). The root of a call tree

is the starting method of any given thread (e.g. the main() method is one such root).

Each method could have one or multiple representing nodes depending on how often it

has been called during the execution.

Figure 3.1: Caller and Callee relationships

The sizes of the resulting execution logs were huge and challenging to process directly.

We thus reduced these call trees into call graphs where methods are represented by

single, unique nodes. All available calls in the call tree are then copied to the call graph

such that duplicate calls are merged. The result is a much smaller graph structure

(averagely about 5% the size of the original call tree), containing as many nodes as

there are methods and as many edges as there are distinct kinds of method calls. From

the call graph, it can no longer be established how often methods call one another,

Hypothesis of Surroundedness 40

Figure 3.2: Excerpt of Call Graph for Chess System

however, this information is not important for our approach. We distinguish between

callee methods which are called by a method, and caller methods which are calling a

method. When we say M1 is a callee of M2, it means that M2 is calling M1. Vice-Versa

for caller relationship: If we say M3 is a caller of M2, it means that M3 is calling M2

(see Figure 3.1).

The call graph also combines multiple threads’ call trees into a single graph if they

share at least one method. In addition to being much more compact, the call graph has

the additional advantage that each node can be matched exactly to one row in the RTM

(because a node in the graph represents a method as does a row in the RTM). Deriving

the call graphs out of a call tree is a simple process (details omitted for brevity). It

is important to note that neither the call tree nor the call graph are connected to the

RTM. Both can and were established independently of the RTM input (the call graphs

were in fact created in course of this project and are presumed correct). Figure 3.2

illustrates an excerpt of the call graph generated from Chess call tree.

We derived a Requirement Call Graphs (RCG) by associating the call graph information

with a requirement from the RTM. Each requirement will be presented by a single RCG.

In the RCG, each node will be labeled with the trace link corresponding to its method

in the requirement trace matrix. Trace method nodes will be labeled with a “t” and no-

trace method nodes with an “n”. For each requirement, we get an RCG that contains

both: the call graph information and the trace/no-trace links from the RTM. Each

requirement has its RCG where the method nodes are labeled with “t” and “n”. The

derivation of such a graph is straightforward and does not require much effort. The

operation is as simple as associating indexed data from two data structure into one

single structure. Figure 3.3 shows an example requirement call graph derived from the

combination of the call graph in Figure 3.2 and the requirement R1 from the RTM in

Table 3.2. Additionally, we colored the trace methods in green and the no-trace ones

in orange to recognize the different labels more easily.

Hypothesis of Surroundedness 41

Figure 3.3: Requirement call graph for Chess System

3.3 Hypothesis

As mentioned previously, we intuitively think that there is a correlation between the

trace/no-trace relationships of methods to requirement and the calling relationships.

We expect a tracing method to be surrounded with other tracing methods. In other

words, the callers and callees of a method should reflect the trace relationship of a

method. When a method is said to be tracing to a requirement, we should also find

callers and callees methods tracing to the same requirement. Analogically, when a

method is said to be not-tracing to a requirement, we should find callers and callees

of that method which are not tracing too. Our hypothesis is that we can use such

correlation to identify correct (trace and no-trace) links from wrong ones.

Observations 42

Chapter 4

Observations

Although our hypothesis seems to be very intuitive and realistic, we have to prove that

such a correlation between trace/no-trace links and calling relationships exists. This

is, of course, the most challenging part of this work, since we have to do experimental

research on case study systems in order to confirm our assumptions and then deduce

how to use this knowledge to validate traceability links. In this chapter, we will explain

the observations that we were able to capture on case study systems. We identify

properties that could be used for the recognition of correct traces from wrong ones.

Understanding these properties is important for understanding why our approach and

particularly its simple patterns are highly effective.

4.1 Clustering

On first inspection, the relationship between any given requirement and code is not

straightforward. If some method A implements a requirement R and method A calls

method B then one of the following two situations applies:

1. method B implements a service required by method A and, by implication, im-

plements requirement R also

2. method B implements another requirement that is meant to coincide when method

A occurs. By implication, method B then does not implement requirement R.

Both situations should be visible in the requirement call graph (RCG). Considering the

colors that trace links (green) and no-trace links (orange) have, the situation (1) would

induce a very clear colors distribution where a single group of green nodes is visible and

all other nodes are orange. In the situation (2), however, we would get a graph with

Observations 43

a lot of small groups of green nodes which are separated from each other with orange

nodes. The distance between the single groups might vary from one case to another,

but most of them should be approximately in the same part of the graph where the

requirement in question is supposed to be executed.

Clustering investigates whether all callers of a method and/or all its callees implement

the same requirements as the method itself. Thus, clustering investigates whether

situation (1) is more likely than situation (2) - perhaps a pattern to be exploited.

Since it is not possible to reason about this theoretically (both situations above appear

reasonable and probably both should occur), we investigated clustering in context of

the four case study systems and their respective golden standards. Table 4.1 depicts

the empirical results.

Trace Clustering No-Trace Clustering
Caller = ’t’ Callee = ’t’ Caller = ’n’ Callee = ’n’

VoD 54.33% 57.31% 91.04% 90.00%
Chess 74.24% 76.39% 81.09% 79.26%
Gantt 54.49% 45.21% 88.82% 92.02%
JHotDraw 31.96% 34.75% 95.03% 94.40%

Table 4.1: Likelihood of clustering

We see significant differences between the various systems but also between methods

that trace to a given requirement and those that do not. If a method traces to a given

requirement then, depending on the system, it is 34-76% likely that its callee also traces

to that requirement (column 3 in table 4.1) or 31-74% likely that its caller traces to

that requirement (column 2 in table 4.1). For example, in case of Gantt, only 45%

of the callees trace to the same requirement the caller is tracing to. Notice that the

likelihoods change drastically for ’no trace’ observations. If a method does not trace

to a given requirement then it is 79-94% likely that its callee also does not trace to

that requirement (column 5 in the table 4.1). The higher percentage is explained in

the fact that traces are rare compared to no traces (at least for the 59 requirements

we randomly selected). Much of the code does not trace to individual requirements.

Therefore, some random code that is known to not trace to a requirement is likely

surrounded by other code that does not trace to that requirement. The exception to

this is the Chess system where the requirements covered larger areas of the code and

correspondingly we see likelihoods that are more balanced.

Obviously, trace are not building clusters in the way that we were expecting it. Even

graphically, we did not see the groups of green nodes as explained at the beginning of

this section. The tracing nodes were rather connected to each other without building

a clear green group. Next, we will investigate the property of connectedness between

traces and no-traces.

Observations 44

4.2 Connectedness

While not all callers and callees of a method seem to relate to the same requirements,

it seems likely that at least one caller or callee relates to the same requirement. The

connectedness metric represents the percentage of methods that are directly connected

to at least one other method implementing the same requirement (where connected

means having a caller or callee).

Table 4.2 depicts the connectedness of trace methods on the four systems. Here, we

distinguish between inner nodes and leaves. Methods are so-called inner-nodes when

they have at least one caller and one callee. The connectedness of inner nodes can

be evaluated on both the caller and callee side (is there at least one caller and/or one

callee?). A method is a leaf node if it does not have callee methods and thus, the

connectedness can be evaluated on the caller side only. There are also root nodes but

these are extremely rare. There should be a root node per thread and often there is

only one root node which is the main() method in Java. We ignore root notes in this

work because of their limited number.

Trace Connectedness No-Trace Connectedness
Caller = ’t’ Callee = ’t’ Caller = ’n’ Callee = ’n’

VoD 88.50% 59.00% 98.50% 93.30%
Chess 99.39% 93.18% 98.98% 92.23%
Gantt 94.31% 76.48% 99.59% 91.99%
JHotDraw 90.15% 72.16% 99.87% 97.77%

Table 4.2: Percentage of connected trace/no-trace methods

For inner-nodes, we have a very high connectedness of 88-99%. Leaves do not perform

as well as inner-nodes but are still 59-97% connected. We can see that no-trace methods

show higher connectedness values and the no-trace leaves perform nearly as well as no-

trace inner-nodes. The high number of no-trace methods compared to trace ones could

explain this again.

The observations of trace/no trace connectedness emphasized our assumption that

methods’ trace are highly interconnected. This behavior is more visible for inner-nodes

but also strong for leaf nodes. Higher connectedness implies that a method that traces

to a requirement is very likely to find another neighboring method that also traces to

that requirement.

Observations 45

4.3 Requirement Call Chain

However, are these connected methods isolated or do they form a chain where all (or

most) methods that implement a given requirement are connected directly or indirectly

with other methods that implement the same requirement?

Figure 4.1: Most methods implementing a given requirement are connected directly or
indirectly by method calls

To observe this, we grouped methods into regions if they trace to the same requirements

and are connected via calling relationships. All 59 requirements we studied were imple-

mented in multiple methods and we surprisingly found that all requirements exhibited

the same effect: there is usually one big region of connected methods which implement

a given requirement and several small remaining regions that for the most times, do

not contain more than a single method. Figure 4.1 shows the distribution of tracing

methods over different regions ordered by size (average group size over all requirements

in each system).

It is important to note that these regions of methods typically form a long chain of

connected methods. These call chains have different lengths depending on the size

of the requirement. The methods in the call chain have different properties. Few of

them have multiple connections. The call chain is “thicker” in some locations (where

multiple callers or callees trace to the same requirement). In other places, the call

Observations 46

chain is “thin” (where only a single caller and/or a single callee traces to the same

requirement). The figure 4.2 shows an excerpt of a Chess RCG indicating how a call

chain could be connected among all other nodes.

Figure 4.2: Call chain from a Chess RCG

Clearly, there is a strong indication that calling relationships correlate with traces

but they are not exactly alike. Next, we present patterns that exploit these basic

connectedness properties of traces.

4.4 Patterns

By watching the colors distribution in the RCGs from different case study systems, we

were able to recognize some kind of patterns in the graph. We decided to identify those

patterns first and then find their correlation with the correctness of traces/no-traces.

In this section, we will explain the different patterns that we were able to derive and

the meaning of each of them to our approach.

Observations 47

4.4.1 Surrounding Patterns

We define the principle of surroundedness as meaning that a method is likely to trace

to a requirements if at least one caller method and at least one callee method trace

to that requirement. The same is true for no trace. This principle is based on the

observation we made above. Yet, it is important to note that this observation is based

on the investigation of individual requirements. At no point did we mix requirements

which manifested itself in the simple terminology we used thus far: a ’t’ for tracing to

an individual requirement and an ’n’ for not tracing to it. Throughout the remainder

of the work, we continue to adhere to this strict separation.

A Requirement Call Graph (RCG) combines the call graph discussed earlier with the

trace information of a single requirement. Each requirement has its own RCG with all

RCGs sharing an identical structure but different labels (’t’ and ’n’). In the RCG, each

node will be labeled with the trace link corresponding to its method in the requirement

column in the RTM. Trace method nodes will be labeled with a“t”and no-trace method

nodes with an “n”.

We speak of a t-surrounding method as having both a caller and a callee who trace to

the same given requirements (caller =’t’ and callee=’t’ - hence surrounded). Similarly,

we speak of a n-surrounding method as having both a caller and a callee who do not

trace to the same given requirement (=’n’). We denote these two patterns as “t �? � t”
and “n �? � n” where “?” stands for some random method, the arrow (’�’) beforehand

refers to the caller and the arrow thereafter refers to the callee (’�’). The caller or

callee is either required to be a trace ’t’ or no trace ’n’. Hence, “t �? � t” represents

the t-surrounding pattern and “n �? � n” represents the n-surrounding pattern (see

Figure 4.3 for an example of t-surrounding and n-surrounding in context of the Chess

system).

Figure 4.3: Examples of “t �? � t” and “n �? � n” patterns.

As implied by the principle of surroundedness, the t-surrounding pattern implies that

the given method (?) should be a trace while the n-surrounding pattern implies that

the given method should be a no trace. Table 4.3 depicts these likelihoods, again

Observations 48

in context of the four case study systems. For example, the likelihood for a random

method that exhibits t-surrounding tracing to the same requirement (t �? � t such

that ?=t) is between 61-96% depending on system. The likelihood for a random method

that exhibits n-surrounding to not trace to a given requirement (n �? � n such that

?=n) is between 86-96%. This likelihood is computed from the golden standard RTMs

of the four sample systems. For t �? � t being ?=t, the likelihood is computed by

counting the patterns “t � t � t” and “t � n � t” in the RCG where t � t � t stands

for three methods calling each other in a sequence and all methods tracing to the same

requirement and t � n � t with a similar sequence except that the middle method does

not trace to the given requirement:

likelihood of t �? � t where (? = t) :=
#(t � t � t)

#(t � t � t) + #(t � n � t)
(4.1)

VoD Chess Gantt JHotDraw

t � ? (? = t) 76.4% 45.2% 34.8% 57.3%
n � ? (? = n) 79.3% 92.0% 94.4% 90.0%
t � ? � t (? = t) 61.5% 96.0% 73.3% 61.8%
n � ? � n (? = n) 93.9% 86.4% 93.9% 96.3%

Table 4.3: Likelihood of calling relationship patterns

Unfortunately, The t-surrounding and n-surounding patterns are useless for leaf meth-

ods because these have callers only (no callees). Since leaf methods amount to roughly

50% of the nodes in the RTM, we cannot ignore them. In the absence of a callee, we

define:

• a t-surrounding pattern for a leaf node as having a caller that trace to a given

requirement (t � ?). Table 4.3 reveals that this pattern resolves between 34-76%

to a ’t’ (less than the t-surrounding pattern for inner nodes).

• a n-surrounding pattern for a leaf node as having a caller that does not trace to

a given requirement. This pattern is 79-94% likely to resolve to a ’n’ as Table 4.3

reveals.

It is noteworthy that the t-surrounding and n-surrounding patterns are small patterns

involving two calls and three methods only (the random method, its caller and its

callee). Since there are potentially many callers and callees for any given method,

these simple patterns must be combined. We will see further in this work that by

considering these simple patterns in combination, we are able to compute expected

traces/no traces with >90% correctness for most cells of the RTM. Before we can discuss

Observations 49

this combination, we must first discuss failure to identify surroundedness (boundary

patterns) and the concept of dominance between patterns.

4.4.2 Boundary Patterns

Not every pattern encountered must be a t- or n-surrounding pattern. As was defined

previously, requirements appear to be implemented in call chains of connected methods

in form of call chains. These regions have boundaries where a method not implementing

a given requirement may call a method implementing one or vice versa. Exactly along

such boundaries, we have difficulty identifying surroundedness.

Figure 4.4: A boundary pattern “t �? � n”

We find such boundary patterns at entry and exit points to and from regions. We speak

of a boundary pattern as having a caller that traces to a given requirement while the

callee does not (i.e. “t �? � n” as depicted in Figure 4.4); or as having a caller that

does not trace to a given requirement while the callee does (n �? � t).

It is not possible to decide whether the given method (’?’) in a boundary pattern

should trace to a requirement or not. It is easy to see that the given method could be

either just outside the requirement region (in which case the ? = n) or just inside said

region (in which case the ? = t). Empirical evaluation on the four case study systems

confirmed this. These boundary patterns are thus failure patterns where no expected

trace can be computed.

A similar argument could be made for leaf nodes. We consider leaves that are called

by multiple methods with different trace links as boundary locations. In other words,

a leaf method having mixed caller links, some of which are traces (’t’) and others are

no-trace (’n’) are considered are as boundary patterns. Such a case occurs when a leaf

method is required by multiple caller methods, yet these methods do not implement

the same requirement(s). In context of leaf nodes, boundary methods are often general

purpose methods.

Since our approach cannot decide on boundary patterns, it should fail in many cases.

However, since methods are often surrounded by multiple callers and callees, boundary

Observations 50

pattern commonly occur together with t- and/or n-surrounding patterns, which can

be decided upon. The following first discusses dominance in cases where t- and n-

surrounded patterns occur together. We then discuss scenarios in which boundary

patterns occur together with t- and n-surrounding patterns.

Automated Trace Validation Approach 51

Chapter 5

Automated Trace Validation

Approach

The surrounding concept that we have just introduced in previous section about the

patterns leads us to create rules for estimating trace links. Apart from being an inner

or a leaf node, we are able to define precise rules for estimating trace values in several

cases. On the one side, t-surrounding and n-surrounding patterns provide two different

rules which estimate respectively a trace ’t’ and a no-trace ’n’ for a method on which

they apply. On the other side, boundary patterns indicates the boundary of a call chain

(region) of traces and hence it defines a critical location were our tool fails to generate

any estimation.

Unfortunately, there are cases where multiple rules apply at the same time. We discuss

in this chapter how to manage those cases in order to select the most appropriate rule.

First, we explain the dominance relationship between traces and no-traces that will be

also reflected on the t-surrounding and n-surrounding cases. Then, we discuss their

relationships to the boundary pattern. And finally, we propose seven categories to

organize these rules depending on their combinations.

5.1 T over N Dominance

It is common that a given method has multiple callers and/or multiple callees. It is

thus common to have multiple patterns apply to single methods. If these patterns are

identical then they confirm each other (e.g., multiple t-surrounding patterns applying to

the same method). If different patterns apply to a given method then their combined

meaning need to be considered. We previously referred to this as considering the

possible combinations of patterns.

Automated Trace Validation Approach 52

It is also common for the t-surrounding and n-surrounding patterns to occur together.

This happens when there are at least two callers of which one traces to a given re-

quirement and the other does not; and if there are at least two callees where one traces

and the other does not. Figure 5.1 depicts such an example of a combination of t- and

n-surroundings on a single method. The one pattern suggests that the given method

traces to the given requirement, the other clearly suggests the opposite.

Figure 5.1: Combination of t-surrounding and n-surrounding on method
Control.setPiece()

This apparent conflict really is none at all. It is common that code implements multiple

requirements. If this is the case, the code serves a purpose that supports a trace and

another purpose that does not. Indeed, t/n conflicts of this manner are common in

the four study systems and, upon investigating this issue, it became obvious that t-

surrounding dominates n-surrounding. We define dominates as meaning that in case

both t-surrounding and n-surrounding applies to the same method, the t-surrounding

wins and the expectation is that the method resolves to ’t’ (and not ’n’ as n-surrounding

would have suggested).

The rationale for dominance has to be seen in the context of granularity (an issue

of importance to traceability but was ignored thus far). It is said that some code

traces to a given requirement if this code implements the requirement in part or full.

Traceability is rarely exclusive and as such it is implicitly understood that the code

may also implement other requirements. If we think of the code as a class (say a

Java class) then the different methods of the class may serve different purposes and

implement overlapping or even distinct requirements. Yet, if some of the methods of

a class implement a given requirement then we say that the class implements that

requirement because it does so in part or full. Much like a method of a class may

be involved in an n-surrounding patterns while another method of that class may be

involved in a t-surrounding pattern, a single method may be involved in both patterns.

If a method implements a requirement in part then the method is said to trace to that

requirement and hence trace dominates the no trace.

Automated Trace Validation Approach 53

5.2 Boundary patterns vs. t/n-surrounding patterns

The issue of dominance is less obvious in context of boundary patterns and their in-

teractions with t- or n-surrounding patterns. A boundary pattern implies failure to

compute an expected trace/no trace, meanwhile the t- and n-surrounding patterns im-

ply success. It would be intuitive to assume that success dominates failure but the

issue is more complex. Erroneous ’n’s only exist inside requirements regions and are

detectable through t-surrounding patterns. Erroneous ’t’s only exist outside require-

ments regions and are detectable through n-surrounding patterns. Figure 5.2 (top two

rows) depicts these two scenarios.

Boundary patterns, however, occur at the boundary of requirements regions. Unfortu-

nately, it is not always possible to correctly identify this boundary - particularly, which

methods should be inside a region and which methods outside. An error along the

boundary moves the boundary as can be seen in Figure 5.2 bottom (an erroneous trace

method may appear to be outside a requirements region or vice versa).

Figure 5.2: Errors inside and outside of requirements regions are detectable, but errors
along boundaries of such regions are not.

Simply speaking, boundary patterns denote the limitations of our surroundedness pat-

terns. We should perceive them as warning flags that these areas are problematic and

may need more (manual) scrutiny then other areas. We thus distinguish three areas:

Automated Trace Validation Approach 54

• pure surrounded nodes where t- or n-surrounding patterns apply only. These

situations apply to nodes inside and outside of requirements regions where the

absence of boundary patterns implies the highest chance of correctness.

• mixed surrounded nodes where both t-/n-surrounding patterns and boundary pat-

terns apply. The situations apply to nodes at the boundary of requirements

regions where the presence of the boundary patterns implies a lower chance of

correctness. Fortunately, it is common for border patterns to also be t- or n-

surrounded, which implies a trace or no trace.

• boundary nodes only. These situations apply to nodes that are at boundaries

without surroundedness patterns as tie-breakers. These nodes cannot be vali-

dated.

Table 5.1 depicts these three areas separately for inner-nodes and leaf nodes (note that

mixed surroundedness does not apply to leaf nodes as was discussed previously) as well

as for trace and no trace expectations (recall that the likelihoods vary between these).

These are labeled as Categories 1-6. Category 7 represents the border which cannot be

validated.

Expectation
Inner Nodes Leaf Nodes

Boundary
Pure

Surrounding
Mixed

Surrounding
Pure

Surrounding

no-trace Category 1 :
n-surrounded

only

Category 3 :
n-surrounded,

boundary

Category 5 :
n-surrounded

Category 7 :
(remaining)
cannot be
validatedtrace Category 2 :

t-surrounded
optional

n-surrounded

Category 4 :
t-surrounded,

optional
n-surrounded,
and boundary

Category 6 :
t-surrounded

Table 5.1: Seven categories of surrounding and boundary patterns

5.3 Algorithm

The validation algorithm that we are proposing is an application of the rules discussed

in the previous sections. The following snippet is a prose of the validation algorithm:

1 getExpectat ion (Node n , Requirement r) {
2

3 i f (n . i s I n n e r ())

Automated Trace Validation Approach 55

4 i f ((hasNCallerOnly (n , r) & hasTCalleeOnly (n , r))

5 | | (hasTCallerOnly (n , r) & hasNCalleeOnly (n , r)))

6 return <CATEGORY 7, FAIL>

7 else i f (hasTCallerOnly (n , r)& hasTCalleeOnly (n , r))

8 return <CATEGORY 2, TRACE>

9 else i f (hasNCallerOnly (n , r)& hasNCalleeOnly (n , r))

10 return <CATEGORY 1, NO TRACE>

11 else i f (hasTCal ler (n , r) & hasTCal lee (n , r))

12 return <CATEGORY 4, TRACE>

13 else i f (hasNCal ler (n , r) & hasNCallee (n , r))

14 return <CATEGORY 3, NO TRACE>

15

16 else i f (n . i s L e a f ())

17 i f (hasTCallerOnly (n , r))

18 return <CATEGORY 6, TRACE>

19 else i f (hasNCallerOnly (n , r))

20 return <CATEGORY 5, NO TRACE>

21

22 return <CATEGORY 7, FAIL>

23 }
24

25 v a l i d a t e C e l l (c RTMCell) {
26 expect = getExpectat ion (getRCGNode(c . method) , c . req)

27 i f (c . va lue = expect)

28 return <SUCCESS, expect . category>

29 else

30 return <ERROR, expect . category>

31 }

The validation algorithm is composed of two parts: 1) to compute expectation

via getExpected() and 2) to compare the expectation with the actual value via

validateCell(). The algorithm for validateCell() is called for each cell in the

RTM. Recall that each RCG node corresponds to exactly one method. If both values

match, then the cell is expected to be correct. Otherwise, it will be tagged as a possibly

erroneous cell. In both cases, we also supply the category through which the success

or error was detected because we will see below that the different categories come with

different likelihoods. The getExpected() algorithm distinguishes between inner nodes

and leaf nodes. Its various if statements explore the surroundedness and border pat-

terns with the dominance reflected in the ordering of the if statements. For example,

category 1 is checked after category 2 because trace dominates no trace.

We investigated each category for correctness. Table 5.2 depicts the different categories

with their respective coverage and correctness likelihoods in percentage. The coverage

represents the ratio of cells satisfying the criteria of the category in question (e.g.,

Automated Trace Validation Approach 56

Category
1 2 3 4 5 6 7

Chess
Coverage 19.2 15.5 3.3 2.9 28.9 23.4 6.9
Correctness 99.2 98.4 74.4 91.6 96.0 93.9 fail

Gantt
Coverage 35.8 2.6 5.8 3.2 38.2 6.5 7.9
Correctness 98.6 92.7 81.7 77.2 96.5 67.3 fail

jHotDraw
Coverage 56.9 1.0 6.5 2.2 28.0 1.6 3.8
Correctness 99.1 92.3 84.8 66.2 98.0 66.6 fail

VoD
Coverage 33.1 3.8 4.4 1.2 43.9 7.9 5.7
Correctness 97.2 88.1 85.5 62.9 92.7 83.9 fail

Average Correctness 98.5 92.9 81.6 74.5 95.8 77.9 fail

Table 5.2: Coverage and correctness of categories in %

category 1 being n-surrounded only). The correctness refers to the ratio of correctly

estimated traces links during the validation task. This data is again based on the golden

standards of the four cases study systems. We see, for example, that the correctness

of category 1 is very high (between 97-99%) and that this category applies to about

a third of all RTM cells (19-56% of all cells). Other categories are quite good also,

especially categories 2 and 5. Good but clearly inferior are the qualities for categories

3 and 4. This is expected since we discussed above that these categories mix border

patterns with surrounding patterns which makes these cells more suspicious. However,

it is important to note that these categories are quite rare: typically only 3-6% of all

cells are of category 3 and 1-3% of all cells of category 4. The approach fails in a very

low percentage of cells as indicated in category 7 (4-8% of cells cannot be validated).

Figure 5.3: Distribution of correctness over coverage.

Automated Trace Validation Approach 57

Figure 5.3 shows this distribution of traces validation quality relatively to the ratios

of cells covered in the subject RTM. About 76-90% of cells were validated with a

correctness higher than 90% (most of them > 95%). These are mostly reached by

the Categories 1, 2 and 5. The small remaining area is divided between cells of lesser

validation quality and the small portion of cells that cannot be validated at all (leftmost

area). It is important to note that our approach is able to validate most cells with high

quality. The categories of failure and the cells with lower quality validations are few.

It is the user’s choice which categories to check manually.

Tool Support: TraZer 58

Chapter 6

Tool Support: TraZer

Our approach is fully automatic and requires very specific input artifacts, namely a

requirement trace matrix (RTM) and a call graph. We did implement this approach

in a tool called TraZer which is basically an eclipse plug-in. In this chapter, we will

introduce TraZer in details - especially the user interface and main functionalities of

the tool. But before getting into the details of TraZer, It is important to understand

the design decisions that we took before and during the implementation stage.

6.1 Design Decisions

Novel techniques, such as trace validation, are always tending to evolve very quickly.

In this regard, it is important to create a generic implementation that eases later

modifications and extensions. At the same time, we should consider the performance

that we might lose due to the to a generic implementation. In this section, we will

explain how did we succeed to implement TraZer on a generic platform, namely eclipse,

and at the same keep our tool working with a high performance.

6.1.1 Eclipse as Platform

Our tool -TraZer - is implemented as a single eclipse plug-in. Eclipse 10 is, obviously,

very known in the software development world. It is an open source integrated devel-

opment environment (IDE) which is maintained by a not-for-profit corporation called

Eclipse Foundation. The IDE provides a very generic plug-in platform that has been

used for many years by other open source projects as well as commercial products. A

10http://eclipse.org/

http://eclipse.org/

Tool Support: TraZer 59

wide variety of projects are already available on that platform without any licensing

problems. Almost all projects are using one of the open source licenses, such as: Eclipse

Public License (EPL), GNU General Public License (GPL), and Mozilla Public License

(MPL). . .

Our decision for eclipse is due to many reasons:

• Eclipse provides a lot of libraries that we could make use of. Indeed, the entire UI

components of TraZer are implemented using JFace 11, a UI toolkit that allows

handling of many UI programming tasks. We also used the Zest 12 toolkit for

Visualization components, such as: drawing call graphs. . .

• There are already many other projects based in eclipse that we could later inte-

grate with our current tool. So, using eclipse now would keep our implementation

open for later integration with other projects.

• Eclipse is platform independent. The interface to the operating system is imple-

mented in a separate layer and it will be always provided and maintained by the

eclipse foundation. Thus, we do not need to spend additional effort to get our

tool running on various platforms, such as: Windows X86, Windows X64, Linux,

and MacOS . . .

• There is also a personal motivation for using eclipse. After multiple years of

professional working on eclipse, we have best “know how” of Eclipse Platform

that should, on the one side, ease the implementation, and on the other one,

improve the quality of the tool.

Eclipse provides also other tools which we might need during a validation task. It is

certainly very useful to have all the tools integrated into one IDE. A software analyst

or a developer would need to perform multiple operations on the source, e.g. browsing,

searching for text, or even generating models out of it. We expect the trace validation

task to be more convenient when the developer could use the same tool for other

tasks that he/she also needs. On the one side, the developer would save the time of

switching between one tool to another, and on the other side, he/she would save the

effort of getting familiar with multiple tool at a time. Furthermore, as we mentioned

before, eclipse is very known in software engineering and it is indeed widely used in

commercial products. Most of developers and software analysts are already familiar

with eclipse and used to work with it on daily basis. So, the learning effort required

for our tool should be minor.

11http://wiki.eclipse.org/index.php/JFace
12http://www.eclipse.org/gef/zest/

http://wiki.eclipse.org/index.php/JFace
http://www.eclipse.org/gef/zest/

Tool Support: TraZer 60

Our use of eclipse did not stop at the implementation level. The Eclipse Test and

Performance Tools Platform 13 (TPTP) served to record the execution information of

our case study systems. TPTP is a framework that provides multiple testing and pro-

filing tools for open source as well as commercial products. More precisely, we used

their debugging agent to record the calling relationships of methods at runtime. The

recorded information is written into an external log file which could be later loaded

into the TPTP allowing many other operations. For example, TPTP provides a very

sophisticated UI for visualizing calling relationships (sequence diagram) and other pro-

filing information (number of classes and instances . . .). So far, we did not need any

special integration with our tool. Both, our TraZer and TPTP, coexist independently

in the eclipse platform. Installing TPTP is optional because our tool could also parse

the execution files and acquire the needed information from them without any external

libraries. Although TPTP provides a parser for the recorded files, we implemented our

own parser in order to improve the overall performance of our tool.

Although eclipse is implemented with high quality standards, it is still have few draw-

backs. The plug-in based architecture has, unfortunately, a memory overhead due to

the number of plug-ins that have to be loaded and managed at runtime. We did few

experiments with a standalone version of our tool, but the saved memory consumption

was not very convincing. Our tool has to deal with a huge amount of data (Execution

Information, and RTM) at the same time. The memory overhead of the eclipse version

compared to our standalone prototype did not exceed 100 Mb. Considering the advan-

tages of eclipse, we did, then, take the final decision to implement TraZer as an eclipse

plug-in.

6.1.2 Database

In most cases, our tool is supposed to deal with a huge amount of data. The recorded

execution information is usually stored in files with several hundreds of Megabytes.

Therefore, we had to carefully design the architecture of TraZer, so that the parsing time

of files and memory consumption during the analysis should be acceptable. At the same

time, the UI of our tool should be responsive even during the parsing and validation

tasks. In that regard, eclipse provides very sophisticated design patterns called jobs

and operations. They are similar to threads in conventional Java program but they will

be created and managed more easily within eclipse. Therefore, we implemented all time

consuming tasks in form of operations. They will run showing a progress information

box which should inform the user about the tasks being done and their progress.

13http://www.eclipse.org/tptp/

http://www.eclipse.org/tptp/

Tool Support: TraZer 61

The parsed information is kept in memory. We could have created an external database

but the data needed is too huge and will be any way loaded to the cache of the database.

Therefore, we decided to keep the parsed data into a custom virtual database which is

implemented as a Singleton in order to prevent recreating it. Each virtual database is

identified by the unique file name from which it was originally parsed. In the proto-

type implementation, we noticed that Java copies the virtual database to the objects

requiring it in order to improve the performance of fetching data. This case occurs

mostly when the database is defined as private field of another object. Unfortunately,

this Java optimization affected drastically the memory consumption of the tool and

produced an inconsistent state of the database in few cases. We were not able to repro-

duce the scenarios responsible for inconsistency states but took measures preventing it

from happening again. The idea was simply to call the database by reference instead of

using a private variable. Java does not support this operation natively. But there is a

work around by using an intermediate referencing object. So, we defined a lightweight

class called DatabaseReference having a single fields databaseID and a single method

getDB() that fetches the concrete database from a DatabaseFactory. Figure 18 shows

a class diagram modeling the database referencing mechanism in TraZer.

Figure 6.1: DatabaseReference class diagram.

The implementations of IDatabase are protected in the containing package and could

only be created using the DatabaseFactory. Each database is created as a singleton

which is uniquely identified by a databaseID. On the first call of getOrCreateDB() in

the DatabaseFactory, a database will be initialized. For the moment, the databaseID

is the project name for which the database has been created. The id is not limited to a

specific pattern and we could use any possible String. If another database exists already

with the given databaseID, it would be replaced with a new one. The other parts of

the program should guarantee that each databaseID will be uniquely used. Thus, we

could manage multiple databases at the same time with minimal memory consumption.

Tool Support: TraZer 62

The objects requiring database access would use the lightweight DatabaseReference

to call it using the getDB() method.

We are basically using a Builder design pattern. The IDatabase interface is the only

visible data structure. DatabaseFactory will create databases using custom properties

and it is the only object that could access class implementations of IDatabase, such as:

VirtualDatabase which is the only implementation for the moment. This architecture

would allow us to change the database implementation in later stages. For example,

we could implement an SQL database that stores all the data in an external database

instead of keeping it in the memory of our tool. This might be useful when the input

data would exceed the memory limits of the hosting computer. We kept this possibility

for later extensions and did not implement it during this thesis. All case study systems

were analyzed with a memory consumption less than 1.5 Gb. We assume that in a

nowadays standard computer would have enough memory (> 4Gb) to run our tool.

The huge amount of data is coming -in the first place- from the recorded runtime

information of the subject projects. TPTP records such information in a standard

XML format. A recorded file could very easily get to a size of multiple hundreds of

Megabytes. For example, the execution information of GanttProject is about 310 Mb

big. Parsing this data is presenting a challenge in the face of memory saving and

usability constraints. There are multiple standard libraries for XML parsing in Java.

Each of which have different characteristics and application areas. The most known of

them are JDOM 14 and SAX 15 . For example, JDOM creates an entire model of an

XML file in the memory in order to let a quick and permanent access to all elements.

This is useful when the XML document is defining elements which are referencing each

other but introduced at different locations in the file. SAX, on the other side, does not

keep anything in the memory. It does just parse the document elements and return

them to the calling program which is supposed to take car of the element references

consistency. The SAX library is, thus, much faster and requires less memory than the

DOM library. We tested both libraries and found out that DOM library took in some

case almost three times the size of the parsed file in memory and twice the parsing time

of the SAX library.

At last, we decided to use the SAX library for parsing the TPTP recorded files. It

proved to be very fast and we succeeded getting the 300 Mb files parsed in less than

10 seconds. The time consumption is very important in any UI based software because

tasks with much time consumption would retard the responsiveness to the user even

in multi-threaded systems. As mentioned above, we used eclipse operations to realize

such “time-consuming” tasks in order to improve the responsiveness of our UI. Next, we

present a detailed overview of the UI components that our tool -TraZer - provides.

14http://www.jdom.org/
15http://www.saxproject.org/

http://www.jdom.org/
http://www.saxproject.org/

Tool Support: TraZer 63

6.2 User Interface

Eclipse Platform has a very structured UI model. The components inside the main

window are managed by another level of containers called perspective. Switching the

perspective is meant to ease changing the entire content of the main window on the

fly. We could define a perspective as a generic user interface that could be adapted to

every tool individually. For example, in eclipse there is already a perspective for Java

development, another for debugging, and another for Plug-ins development. . . This UI

model allows to integrate a variety of tools into the same UI without getting confused

between them. Usually, the perspectives share the same key-shortcuts and menu actions

in order to keep a standard handling among the different tools.

Our tool implements also its own perspective containing UI components that should

support the user during a trace validation task. Next, we will explain the structure of

the TraZer perspective and how the provided components are meant to help the user.

6.2.1 Perspective

An eclipse perspective has a very clear structure. There is basically an editor-area,

around which all other components are organized into sections depending on their

location relatively to it. Figure 6.2 shows a screenshot of the TraZer perspective which

constitutes of three main sections: (1) the project explorer view, (2) the editor-area,

and (3) the utility views. Eclipse Platform provide the option to change the layout

and the size of views individually. Each user could personally change the layout of

the TraZer perspective and store it as a custom perspective layout. He/she could also

extend the perspective by adding other sections and views from other tools. Basically,

this option is provided to improve the integrity of tools with each other.

The project explorer view (1) is a tree view of projects being analyzed by the tool.

Each project is created manually using a “wizard” that asks the user for the recorded

execution log file and the requirement trace matrix (RTM) file. The first file is supposed

to be an XML file in the standard TPTP format and the second one is an Excel file

where the requirements are ordered on the columns side and the code elements on the

row side. After creating a project, an automatic build should be launched in order to

parse both files and create the appropriate artifacts (database, call graph file, and RTM

file) that will be needed for the validation.

After creating a new project, the build will be started automatically. But existing

projects have to be built manually when needed. There is a context menu action

Tool Support: TraZer 64

that allows the user to call the build project operation. Although, Eclipse Platform

provides the required techniques to automate the build operation, we did prefer keeping

it managed manually, because once the user has multiple projects with big size input

files, building all of them would need too much memory and -at a certain point- a usual

computer won’t be able to manage all of them at the same time.

Every file generated after building the project has an associated editor to view and -in

some cases- also edit its content. The editor-area section (2) is the location where editors

are opened when a file is selected in the project explorer view (1). The bottom section

(3) contains utility viewswhich is supposed to hold addition information views. In the

course of this thesis, we implemented only one view from scratch, namely the “Patterns

View”. But we extended existing Eclipse views (Properties View and Console View)

to show specific information related to the opened editor. In the remaining sections

of this chapter, we describe the editors and views in the standard TraZer perspective

with more details.

Figure 6.2: The TraZer perspective.

Tool Support: TraZer 65

6.2.2 Editors

The editors are a conventional interface for viewing and editing file contents. In the

Eclipse Platform, they are associated with unique features based on the multi-tools

platform. For example, different editors could bind common actions from the tool bar

and file menu to their content. This concept is very useful because it allows reusing

existing actions for the same tasks even in different editors. The Eclipse platform

grantees the management of the opened files and their corresponding editors. It is

responsible for the associations of editors and actions to each other. For each opened

file the appropriate editor is initialized in a “tab” structure independently from all other

editors. When an editor has the focus in the UI, the platform associates automatically

the tool bar and file menu actions to it.

TraZer implements two editors which are intended to open the files produced during

the project build. These files are just references for showing and editing the project

data which is basically in the memory. We have mainly two files types: call graph

files having the extension “.cgf” and requirement trace matrix files having the extension

“.rtm”. Both of them do not have any content. Opening one of the files would just call

the appropriate editor and load the data that it requires directly from the database of

the project. Thus, the editors would not show any content if the appropriate project is

not built. We recall that the build operation will be called automatically after creating

a new project, but the user has to call it manually for existing projects.

Call Graph Editor

The call graph editor is the editor responsible for opening the “.cgf” files. It shows the

call graph as it was generated from the execution log file which has been previously

defined when creating the project. We use the Zest (see section 6.1.1 on page 58)

library to create a graphical representation of the call graph. It creates a graphical node

for each method and connects the nodes to each other using the calling relationships

of the methods. Each node is labeled with the name of the code element which it

is representing. The result would be a visible directed graph indicating the calling

relationships between code elements. In section (2) of figure 6.2, you can see an example

content of the call graph editor.

The editor contributes to the toolbar with few useful actions for graphical operations,

such as: Magnify Nodes (), Shrink Nodes (), and Show/Hide Node Labels ().

These actions are supposed to provide simple tools to manipulate the graph in order

to improve the visibility of the graph. Some projects have hundreds of nodes and Zest

will reduce the size of nodes in order to fit them all into the available space. The Mag-

Tool Support: TraZer 66

nify/Shrink Nodes actions provide the option the increase or reduce the size of nodes.

This is especially very helpful when the nodes are getting very small. Furthermore,

the user might hide or show the labels of the nodes in order to make a better overview

picture of the call graph without being disturbed by the text appearing on each node.

RTM Editor

There is a massive problem with RTM representations. Using Excel sheets has been the

common sense representation of RTMs, even though there is no standard representation

for RTMs yet. Using a common table manipulation software, such as: Excel, might do

the needed tasks, but usually, they are commercial and do not provide easy interfaces

for external access to the content of files. Every time we find an open source library

for reading and writing Excel files, we face other unexpected problems. For example,

the Apache POI 16 (the Java API for Microsoft Documents) deceived us with its huge

memory consumption especially when writing files. Therefore, we decided not to use

external tools for RTMs and build our own table editor that provides the required

functions for an RTM.

The screenshot of the RTM editor depicted in figure 6.3 shows an except the Chess RTM.

As explained previously, the table maps the code elements (rows) to the requirements

(columns). We use our naming convention for traces ’T’ and no-traces ’N’ in every cell

to define the type of the link between the given code element and requirement. We are

also using colors for the different links: green for ’T’ and orange for ’N’. Thus, we keep

consistent names and symbols between RTMs of the different projects independently

from their format and symbols.

The table in RTM editor contains three levels of information: the Input level, the

Estimation level, and the Validation level. The user could switch between the differ-

ent levels using the available actions in the top right corner of the editor. Each of

them has its own action icon representing the initials of the level name (Input: ;

Estimation: ; Validation:). By default, the input level is shown when the RTM

editor is opened. It shows basically the input RTM as it was read from the input file.

The estimation level reveals the estimated values of our algorithm. Additionally to the

terms and colors of the input level, the estimation level depicts cells that could not be

validated as failed ’F’ in light-yellow color. The validation level exhibits the comparison

between previous levels. If the estimated value confirms the input value, then the cell

would be marked as correct with the green color. Otherwise, it will be marked as a

possible erroneous link in a red colors. But, as we have multiple degrees of certainty

about the correctness (recall the categories 1 to 7), we are applying a different color

16http://poi.apache.org/

http://poi.apache.org/

Tool Support: TraZer 67

Figure 6.3: The RTM Editor.

tone for each category. Presumably correct links of category 1 and 2 are said to have

the best chances for correctness, and thus we mark them with a dark green color. We

note, here, that both traces and no-traces are handled equally and marked with dark

green color that indicates a correct link. The category 3 and 4 are weaker but still have

a considerable chance of correctness. Therefore, we color them in lighter green indi-

cating possible locations for manual checks. For incorrect links, on the other hand, we

are using different tones of red color. Again, the darker tone is marking the categories

1 and 2, and the lighter tone is marking the categories 3 and 4. The cells where our

approach failed to compute an estimation are kept unmarked.

6.2.3 Views

In the Eclipse Platform a view is typically a small section showing particular data or

information. For example, the Project Explorer View shows the tree of projects, their

Tool Support: TraZer 68

sub-files, and sub-folders in the workspace. The Eclipse Platform is already providing

a lot of views. Any new tool could implement its own views from the scratch or modify

and reuse existing ones. In the TraZer project we created three views using three

different strategies.

Console View

The console view is already provided by Eclipse Platform. We applied a mechanism

to extend it into a custom view. The standard view in eclipse is supposed to show

the output of java programs. Our extended version is called TraZer Console. When

TraZer starts, this console hooks itself to the Log4J 17 library in order to track the

logging output from our tool. It does also provide a more friendly user interface than

the standard console by coloring the output lines depending on the severity of the log

statement: error logs are displayed in red, warnings in orange, and info and debug

statements are displayed respectively in blue and green. Thus, it is much easier to

recognize a failure in the program by just tracking the red color statements.

Properties View

The Properties View is also already provided by Eclipse Platform. There is however

no need to extend the existing one. It is already implemented in a generic way. The

Properties View reacts basically to each selection in the workbench and shows the

appropriate properties of the selected data when possible. The selected objects must

provide an interface to let the properties view access its properties and show them.

Each object, which is supposed to accept such access, must implemented an adapter

(design pattern) from the type IPropertySource. We implemented this design pattern

for the graph nodes and the RTM cells. When one of these objects (a node in the

graph or a cell in the RTM editor) is selected, the Properties View checks whether it is

extending the IAdapter interface and providing an adapter for the IPropertySource

type or not. If it is the case, the view calls the adapter to get the properties of the

selected object.

Patterns View

The Patterns View is actually the only view that we created from scratch. Following

the concept of the Properties View, we designed it also to listen to selections in the

17http://logging.apache.org/log4j/

http://logging.apache.org/log4j/

Tool Support: TraZer 69

RTM Editor and Call Graph Editor. It shows basically a detailed view of the call graph

starting at the selected method. If we select node in the Call Graph Editor, we show

a sub graph containing that node and all its callers and callees. On the one hand,

the advantage of this view over the Call Graph Editor is that it shows the connections

more clearly when the Call Graph is overcrowded with too many nodes. On the other

hand, if we select a cell in the RTM, the view shows the node of the corresponding code

element and its callers and callees in the call graph without the need to switch back to

the call graph editor. Additionally, in this view the nodes are colored as their cells do

in the RTM. Such a view should help the user understand the decisions taken by our

tool by manually checking the calling and called code elements and their labels.

Evaluation 70

Chapter 7

Evaluation

Our approach was designed to validate existing traces. It is thus independent of any

technique used to capture or recover the trace links. In this section, we demonstrated

that our approach is able to validate trace links with high correctness and coverage

where correctness reflects the percentage of correct error feedback and coverage the

percentage of RTM cells that can be validated. Ideally, both correctness and coverage

should be high. Since the golden standards represent high-quality trace information

but trace validation is as likely used on less perfect trace information, this section

demonstrates our approach’s ability to cope with erroneous traces where we show that

correctness remain high and coverage drops to more incorrect the traces.

7.1 Accuracy

Thus far, we demonstrated that our approach has both high accuracy and high coverage

in context of the four case study systems and their respective golden standards. Our

approach’s correctness should, however, be high also for RTMs of less perfect quality

(for which the quality is not known ı̈¿1
2 priori). Next, we measure the performance of

our approach with varying input quality.

Errors are basically wrong ’t’s (a ’t’ which is supposed to be an ’n’) and/or wrong ’n’s

(’n’ which is supposed to be ’t’) in the RTM. We thus randomly seeded errors in the

golden standards by switching ’t’s into ’n’s and ’n’s into ’t’s to measure our approach’s

ability to detect incorrect traces and incorrect no traces. We tested our approach on

RTMs with 10-50% random trace errors seeded. The percentage was measured relative

to the number of traces in the RTM. That is, if a requirement was implemented in twice

as many methods than another requirement then 10% seeding of errors involved twice

as many methods.

Evaluation 71

The traces are usually much less than no-traces, especially in larger projects. We

noticed that in the case study systems the number traces for each requirement was

about 5-12%. The Chess system was the only one with a balanced number of traces

and no-traces. For this reason the error injections was not as intuitive as it might seem

to be. There is a dilemma about the number of errors that we are supposed to inject

in order to make a meaningful comparison between traces an no-traces. For example,

injecting 10% of erroneous traces (turning 10% of ’n’s into ’t’s) might produce twice the

number of traces that do really exist in a big project, and thus the number of wrong

traces would be about 50% instead of 10% as we intuitively thought. Therefore we

decided to scale the number of injected errors relatively to the number of traces in the

given project. The number of random ’n’s seeded was matched the number of random

’t’s seeded to allow for direct comparison. We injected both random ’t’s and random

’n’s but measured them separately to understand their respective implications.

Figure 7.1: Validation quality of traces/no-traces in poor quality RTMs.

Evaluation 72

We applied our algorithm on such RTMs seeded with errors and recorded the percentage

of correct validations. Figure 7.1 shows the evolution of correct trace and no-traces

ratio with increasing errors ratio. We observed that our approach performs quite well

with < 30% seeded errors. Both traces and no-traces were well above 80% correctly

validated. The upper part in Figure 7.1 shows data with regard to the random seeding

in traces categories 2 and 4 only. No-trace categories 1 and 3 shows an even better

behavior with the same test RTMs used for trace links (lower part in Figure 7.1).

Except for the Chess system, all other projects had almost a constant correctness ratio

even at very high errors ratios. The correctness decreased between 0-3% from the initial

values. This could be explained by the difference between the initial number of no-trace

links and the number of seeded errors. The Chess project did not have a big difference

between the number of traces and no-traces, and thus, the correctness ratio of no-traces

decreased similarly to that of traces.

The seeded errors in a test RTM could have three possible effects on the RCG struc-

ture:

1. Weaken existing surrounding cases by adding boundary patterns to surrounded

methods.

2. Break existing surroundings and change them to boundaries.

3. Create new surroundings.

The first effect (1) would affect methods with multiple pure surroundings. If one of

those surroundings has been changed, our algorithm would still recognize the method

in question as a possible link. It would just shift to a less correctness certainty category

but the estimate link would still correctly generated. Although, we would risk losing

good quality links, this effect does not influence the coverage of neither traces nor

no-trace.

The second effect (2) is very dangerous because it would directly affect the best quality

category of trace/no-trace links. If a method has only one pure surrounding, it will

lose its surrounding by only changing one of the neighboring links. In this case, the

surrounding pattern will be transformed into a boundary pattern and the method won’t

be correctly estimated any more but rather eliminated by the Filtering Rule. It is more

dangerous for the coverage than for the quality of the results.

The last effect (3) is the most dangerous one, since it would create incorrect sur-

roundings. We distinguish two kinds of this effect: (i) is when a boundary patterns

is transformed into a surrounding, and (ii) is when both sides of a surrounding are

Evaluation 73

coincidentally changed and thus, the opposite surrounding would be created. The kind

(i) is not very problematic. The boundary pattern identifies already a method that has

the same chances having a trace or a no-trace link. Intuitively, random errors would

introduce as much incorrect links as correct ones. This kind should not present a big

threat to the quality. It might, however, increase the coverage by introducing links that

were originally eliminated by the Filtering Rule. But the coverage improvement should

stay small, since the ratio of boundary patterns is very limited (< 5% in most test

projects). The second kind (ii) influences the accuracy of best quality links category

that we were able to classify by pure surroundings. We expect this kind of errors to

affect both correctness as well as coverage of our approach. But, as the chances are

very small getting both erroneous neighbors, the influence on the overall quality of the

results should be still acceptable.

7.2 Coverage

The coverage in the context of this work is the metric defining the ratio of links that

could be validated from the total number of links. We did previously (figure 5.3 on

page 56) show that our approach was covering above 80% of trace links. In this sec-

tion we aim at investigating the impact of decreasing RTM quality on the coverage of

validated traces.

Figure 7.2: Validation coverage for traces.

Evaluation 74

Figure 7.2 depicts the coverage of our approach relative to the random error seeding

applied in previous section. Generally, we see that the coverage also decreases slightly

with increasing error seeding. The effect is especially visible in the Chess system which

is a very special case study. We recall that Chess has a roughly balanced number of

traces and no-traces. Consequently the number of seeded error was higher especially

for no-traces. In fact, the high number of wrong traces and no-traces is the main reason

for the remarkable loss of correctness and coverage. The other systems had almost a

constant coverage over all test RTMs.

Overall, the correctness and coverage metrics confirm our approach’s applicability to

validating requirements to code traces of various degrees of quality. Although, the case

study systems have different characteristics, the performance of our approach seems

to be very reliable even in some special cases (Chess system). There is also another

property that we should exploit, namely scalability. An approach that does not scale

with growing size of input might get very quickly to its limits and be useless for many

commercial products.

7.3 Scalability

The main goal of our approach is to automate the validation of traces because this task

is as time consuming as traces retrieval. The tool support provided by TraZer should

reduce the overall effort required. But, usually there is a problem with automating

growing problems, namely scalability. It is important to analyze how our algorithm

scales with bigger projects. Unfortunately, we did not have the chance to get bigger

projects than the actual case study systems. Therefore we limit the scalability analysis

to these systems.

The algorithm that we are proposing in this thesis (see section 5.3 on page 54) is

very simple and straightforward. Considering the two-dimensional structure of the

RTM, the asymptotic complexity of that algorithm is O(n×m), were n is the number

code elements and m is the number of requirements. There is also the possibility to

implement the matrix as simple array with a sophisticated index computation as used

to be in hash-tables. Such an implementation might improve the performance of the

algorithm but the asymptotic complexity would remain the same. An experimental

analysis of the performance of our tool on the case study systems showed that our tool

requires less than 10 seconds for the biggest projects (JHotDraw and GanttProject).

But most of the time is required for parsing the input data. The validation is always

finished in few fractions of a second which could be explained by the linear complexity

of the algorithm.

Discussion and Future Work 75

Chapter 8

Discussion and Future Work

There is already a lot of activity in the area of traceability but the automation of re-

trieval and recovery of traces has always been the first priority task. We think that the

automation is less useful as long as the correctness of traces is not validated. A reliable

validation of retrieved traces would certainly improve their quality. Our approach is al-

ready validating traces with very good correctness ratios and we believe that it is a very

good candidate for combinations with other retrieval and recovery approaches. There

are, however, some open issues that we have to investigate before getting into analyz-

ing the combinations of our approach with other automated traceability approaches.

In this chapter, we discuss shortly some of the open issues that have to be investigated

first before building other techniques upon it.

In this work, we met implicitly some assumptions which are not fulfilled in some cases.

E.g. we assumed that the golden standard RTMs are complete and correct for the

case study systems. But in the course of our work, we noted that the completeness is

not always fulfilled. We might argue that the assumption should be correct, since the

quality delivered by our approach is satisfactory. But we should prove that those open

issues do not represent any threat to validity of our approach. Therefore, an extensive

investigation is necessarily to show the effect of such issues and prove that their effect

is limited and would not threaten the reached results. We discuss in following sections

some of these issues and propose our expectations about their effects.

8.1 Incompleteness

We have always assumed that the input data is complete and correct. The correctness

should be already guaranteed by the professional developers responsible for retrieving

the traces. Practically speaking, there is no reasonable method to get a traces quality

Discussion and Future Work 76

better than what such a developer could deliver. Therefore, we find our assumption

about the correctness very sound and we admit it to be true. But the question of

completeness is still open nonetheless. Since we have two types of input data, we

distinguish between two kinds of incompleteness: On the one side, the input RTM could

be incomplete, and on the other one, the call graph could be missing some calls.

The incompleteness of an RTM means missing traces/no traces for some code elements.

We distinguish between two cases: full incompleteness and partial incompleteness. The

first case of full incompleteness occurs when a code element is missing or its entire

row is empty in the RTM. The second case occurs when only few cells are empty or

missing, and hence the incompleteness is partially. We faced the full incompleteness

case in our study multiple times. We recall that in our study only a sample set of

requirements treated was analyzed in each system. There are other requirements which

have not been traced, and consequently the code elements tracing to them would be

missing in the RTM. The second case of missing cells is mainly due to human mistakes.

The developer recovering the golden standard RTM could have overseen some cells.

We should remember that there is a “tiredness” (see section 2.4 on page 32) effect

which would influence the performance of a human during the recovery or validation of

traces.

The cells of the RTM are basically used as labels in the requirement call graphs (RCG).

When some of them are missing, we would get some missing labels in the RCGs. For

this thesis, we have decided to keep the incompleteness issue out of the scope. So,

we did simply ignore the nodes with missing labels in RCG. Our algorithm seemed to

be delivering very good results even without any special treatment for missing traces.

Therefore, we expect such kind of missing data to have a very limited influence on the

overall quality of the validation algorithm that we are proposing.

The incompleteness in the call graph is generally caused by the recorded execution

logs. Some calling relationships could have been missed due to poorly selected unit

tests. Thus, selecting the unit tests carefully is of high importance for our approach.

In our work, it is not try to prove that we performed good or bad unit tests. Our main

goal was creating a simple approach without any high effort preparations. Therefore,

we did not take any special care about the quality of the unit tests. We have just

executed each requirement as it is supposed to be done by a normal user. In spite of

that, the quality and performance of our approach are very convincing.

The study of missing calls’ effect might be the subject of a future work. For the

moment, our approach did not show any quality degradation due to missing calls or

missing traces. We suggest also to run our approach on a static call graph. In fact, a

static call graph might provide the missing calls from the dynamic call graph. Even

Discussion and Future Work 77

though, we have intentionally chosen the dynamic analysis to eliminate the overhead of

dead code, we might need a static analysis to fill the gaps resulting by poorly designed

unit tests.

8.2 Granularity

The granularity issue could be discussed on both sides of a trace, on the code element

side as well as on the requirements side. The granularity deals basically with the level of

details in trace links. Traces that are connecting methods to requirements are certainly

different from traces connecting classes to features (high level requirement).

On the code element side, the granularity defines the details level to which the traces

are connected. E.g. are the traces connected to methods, to classes, or to lines of

code. . . we assumed in the scope of this thesis that the traces are on methods level.

Unfortunately, there are no known standards about the granularity of code elements

in traceability. All case studies we used are providing traces from requirements to

classes. The method level traces are easily derived from the class level. We recall a

basic concept in traceability that some code is said to trace to a given requirement

if this code implements the requirement in part or full (see section 5.1 on page 51).

Therefore, we derive the traces of methods from their classes. Each method in a class

will be linked to the requirements that the enclosing class is tracing to in the RTM.

Unfortunately, the derivation introduces some erroneous traces especially in classes

which are implementing multiple requirements at the same time.

The patterns concept that we introduced in this thesis is based on the idea of having

requirements implemented in multiple methods which would call each other at runtime.

This concept might be useless if the requirements are implemented in a higher (e.g.

classes)or lower (e.g. lines of code) granularity. We did not investigate this but we

think such an investigation could make our assumptions more objective, especially

that tracing is required in different levels of granularity. Furthermore, we expect the

information of lower granularity relationships to introduce new patterns. For example,

the methods and fields in a class could be connected with new patterns. The study of

such relationships and patterns would be certainly enriching for our approach. As a

consequence, the algorithm and the quality categories have to be extended in light of

the new patterns and relationships.

On the requirement side, there is also an issue about the requirements details level. As

we have already explained in a previous section (see section 2.1 on page 7), there is a

difference between a software feature and a software requirement. Many developers do

Discussion and Future Work 78

not know the difference between them. Usually, the feature is a high level requirement

which is comprehensive to a client. In some cases, it is also called a concern, because it

is concerning -in the first place- the people who are supposed to use the final product.

A feature/concern does often summarize a set of low level requirements. For our inves-

tigation, the requirements in the golden standard RTMs might be classified as features

for two reasons: (1) in many cases, individual requirements are grouping too many

methods in their call chains which is an indication for big requirements (features); (2)

the investigated requirement call graphs have often had more than one call chain. Each

call chain might represent an independent low level requirement, but they are grouped

under the same feature.

Further investigations on requirements/features composition could be useful for our ap-

proach as well as for others. We imagine that understanding the call chains structure

could be very helpful for program understanding and feature location researches. Un-

fortunately, we were not able to achieve this step in the scope of this thesis due to the

lack of permanent work with the responsible developers on the case study systems.

8.3 Traces Prediction

Although, this thesis is mainly proposing an automated technique for requirement-to-

code traces validation, other purposes could be served using the same technique. Our

approach does automatically estimate trace link for methods using other existing trace

links and then compares it to the actual trace link in order to estimate the correctness

of that trace. But our approach is also able to estimate a trace link even when the

actual value is missing (incompleteness). Obviously, it is not a matter of validation

anymore but rather a prediction of the missing trace link.

We have shown that our approach is delivering high quality estimations. In case of

missing traces, the developer might apply our approach to predict possible links for

methods with sufficient neighboring traces (surroundedness). The delivered traces are

ordered into several quality categories and the developer could decide which traces or

categories are suspicious and have to be verified manually. For example, the developer

might decide to keep all traces acquired from full-surrounding cases (correctness > 90%)

and verify the other categories. The verification of predicted traces would be certainly

less complicated and less time consuming than the retrieval from scratch. Moreover,

the traces prediction could be called recursively and generate further traces based on

predicted ones. The quality of recursively generated traces might deteriorate compared

to the traces which are predicted in the first run. The topic of trace prediction is

certainly worth further investigation, especially that it is mixing the validation with

the coverage of traces.

Discussion and Future Work 79

There are some behaviors that we did not mention in the observations chapter, because

they are of no relevance to our validation approach. We noted, for example, that the

call chains are often very near to each other so that only few methods are separating

them. In our opinion, the separating methods are very strong candidates for erroneous

no traces. So, they should be connecting the call chains as traces rather than separating

them as no-traces. This kind of locations (between two call chains) in a requirement

call graph might be expressed in other patterns longer than three elements. Then,

we would be able to exactly identify the methods involved in such separations of call

chains. Yet, another possible extension for our approach.

8.4 Conclusion

This thesis demonstrated a novel approach to validating requirements-to-code traces

together with calling relationships in the code. We introduced the algorithm of our

approach which first computes expected traces/no-traces based on the surroundedness

patterns and then compares them with the given input traces. If the given traces differ

from the expected trace then an error is reported. The error is a potential error since

our heuristics are not 100% correct but, as was demonstrated, our approach is of high

quality and applicable to most cells.

Our technique represents an important step towards more automation for traceability

because state-of-the-art predominantly focused on creating or recovering requirement-

to-code trace links where the correctness of these retrieved traces are typically verified

manually. Yet, manual trace validation was shown to be of poor quality with exper-

iments showing that human subjects are likely decreasing the quality of input traces

that exceeded > 50% correctness [18]. Our approach is able to validate > 80% of the

input traces with > 90% correctness. Only 4-8% of the traces could not be validated.

We also demonstrated that the approach is still very reliable even with relatively poor

quality input.

We admit that there are still other open issues worth investigating, but the proposed

technique has, nonetheless, proved the ability to provide reliable traces validation with

a high correctness. We have also shown that the same technique could be used for other

purposes, such as: traces prediction. Obviously, this thesis is opening new opportunities

in the traceability area, but at the same time, it is also rising other research questions

about the correlation between traces and execution information.

Bibliography 80

Bibliography

[1] Antoniol, Canfora, Casazza, and De Lucia. Information retrieval models for recov-

ering traceability links between code and documentation. In Proceedings Interna-

tional Conference on Software Maintenance ICSM-94, pages 40–49, Victoria, BC,

Canada, 2000.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering

traceability links between code and documentation. IEEE Transactions on Soft-

ware Engineering, 28(10):970–983, October 2002.

[3] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. Recovering code to documen-

tation links in OO systems. In Sixth Working Conference on Reverse Engineering

(Cat. No.PR00303), pages 136–144, Atlanta, GA, USA, 2002.

[4] G. Antoniol and Y. -G Gueheneuc. Feature identification: a novel approach and a

case study. In Proceedings of the 21st IEEE International Conference on Software

Maintenance, 2005. ICSM’05, pages 357– 366. IEEE, September 2005.

[5] Ted J Biggerstaff, Bharat G Mitbander, and Dallas Webster. The concept assign-

ment problem in program understanding. In Proceedings of the 15th international

conference on Software Engineering, ICSE ’93, pages 482–498, Baltimore, Mary-

land, United States, 1993. IEEE Computer Society Press. ACM ID: 257679.

[6] Kunrong Chen and VÃ¡clav Rajlich. Case study of feature location using de-

pendence graph, after 10 years. In 2010 IEEE 18th International Conference on

Program Comprehension, pages 1–3, Braga, Portugal, June 2010.

[7] J. Cleland-Huang, C.K. Chang, and M. Christensen. Event-based traceability

for managing evolutionary change. IEEE Transactions on Software Engineering,

29(9):796–810, September 2003.

[8] Jane Cleland-Huang, Brian Berenbach, Stephen Clark, Raffaella Settimi, and Eli

Romanova. Best practices for automated traceability. Computer, 40(6):27–35,

Bibliography 81

June 2007.

[9] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A

systematic survey of program comprehension through dynamic analysis. IEEE

Transactions on Software Engineering, 35(5):684–702, September 2009.

[10] Marc Eaddy, Alfred V. Aho, Giuliano Antoniol, and Yann-Gaël Guéhéneuc. CER-

BERUS: tracing requirements to source code using information retrieval, dynamic

analysis, and program analysis. In 2008 The 16th IEEE International Conference

on Program Comprehension, pages 53–62, Amsterdam, The Netherlands, June

2008.

[11] Alexander Egyed, Florian Graf, and Paul Grunbacher. Effort and quality of recov-

ering Requirements-to-Code traces: Two exploratory experiments. In 2010 18th

IEEE International Requirements Engineering Conference, pages 221–230, Sydney,

Australia, September 2010.

[12] Andrew David Eisenberg and Kris De Volder. Dynamic feature traces: Finding

features in unfamiliar code. In Proceedings of the 21st IEEE International Con-

ference on Software Maintenance, pages 337–346. IEEE Computer Society, 2005.

ACM ID: 1091864.

[13] O.C.Z. Gotel and C.W. Finkelstein. An analysis of the requirements traceabil-

ity problem. In Proceedings of IEEE International Conference on Requirements

Engineering, pages 94–101, Colorado Springs, CO, USA, 1994.

[14] Jane Huffman Hayes, Alex Dekhtyar, and James Osborne. Improving requirements

tracing via information retrieval. In Proceedings of the 11th IEEE International

Conference on Requirements Engineering, page 138, Washington, DC, USA, 2003.

IEEE Computer Society. ACM ID: 943920.

[15] J.H. Hayes, A. Dekhtyar, and S.K. Sundaram. Advancing candidate link generation

for requirements tracing: the study of methods. IEEE Transactions on Software

Engineering, 32(1):4–19, January 2006.

[16] J.H. Hayes, A. Dekhtyar, S.K. Sundaram, and S. Howard. Helping analysts trace

requirements:an objective look. In Proceedings. 12th IEEE International Require-

ments Engineering Conference, 2004., pages 233–243, Kyoto, Japan, 2004.

[17] Michael Jiang, Michael Groble, Sharon Simmons, Dennis Edwards, and Norman

Wilde. Software feature understanding in an industrial setting. In 2006 22nd IEEE

Bibliography 82

International Conference on Software Maintenance, pages 66–67, Philadelphia,

PA, USA, September 2006.

[18] W. Kong, J.H. Hayes, A. Dekhtyar, and J. Holden. How do we trace require-

ments? an initial study of analyst behavior in trace validation tasks. In Fourth

International Workshop on Cooperative and Human Aspects of Software Engineer-

ing (CHASE 2011), May 2011.

[19] Patrick Mäder, Orlena Gotel, and Ilka Philippow. Rule-Based maintenance of Post-

Requirements traceability relations. In 2008 16th IEEE International Requirements

Engineering Conference, pages 23–32, Barcelona, Spain, September 2008.

[20] Andrian Marcus and Jonathan I Maletic. Recovering documentation-to-source-

code traceability links using latent semantic indexing. In Proceedings of the 25th In-

ternational Conference on Software Engineering, ICSE ’03, pages 125–135, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[21] Marius Marin, Arie Van Deursen, and Leon Moonen. Identifying crosscutting

concerns using Fan-In analysis. ACM Transactions on Software Engineering and

Methodology, 17(1):1–37, December 2007.

[22] Collin McMillan, Denys Poshyvanyk, and Meghan Revelle. Combining textual

and structural analysis of software artifacts for traceability link recovery. In 2009

ICSE Workshop on Traceability in Emerging Forms of Software Engineering, pages

41–48, Vancouver, BC, Canada, May 2009.

[23] Tao Qin, Lu Zhang, Zhiying Zhou, Dan Hao, and Jiasu Sun. Discovering use cases

from source code using the branch-reserving call graph. In Software Engineering

Conference, 2003. Tenth Asia-Pacific, pages 60– 67. IEEE, December 2003.

[24] Martin P. Robillard and Gail C. Murphy. Concern graphs: finding and describ-

ing concerns using structural program dependencies. In Proceedings of the 24th

international conference on Software engineering - ICSE ’02, page 406, Orlando,

Florida, 2002.

[25] M.P. Robillard, W. Coelho, and G.C. Murphy. How effective developers investigate

source code: an exploratory study. IEEE Transactions on Software Engineering,

30(12):889–903, December 2004.

[26] Norman Wilde and Michael C. Scully. Software reconnaissance: Mapping pro-

gram features to code. Journal of Software Maintenance: Research and Practice,

Bibliography I

7(1):49–62, January 1995.

[27] Stefan Winkler and Jens Pilgrim. A survey of traceability in requirements engineer-

ing and model-driven development. Software & Systems Modeling, 9(4):529–565,

December 2009.

[28] W.E. Wong, S.S. Gokhale, J.R. Horgan, and K.S. Trivedi. Locating program fea-

tures using execution slices. In Proceedings 1999 IEEE Symposium on Application-

Specific Systems and Software Engineering and Technology. ASSET’99 (Cat.

No.PR00122), pages 194–203, Richardson, TX, USA, 1999.

[29] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. SNIAFL: towards a

static noninteractive approach to feature location. ACM Transactions on Software

Engineering and Methodology, 15(2):195–226, April 2006.

Eidesstattliche Erklärung II

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die den

benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich

gemacht habe.

Linz, am July 20, 2011

Achraf Ghabi

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Structure of this Thesis

	2 Requirement-to-Code Traceability
	2.1 Terminology
	2.2 Usefulness of Traceability
	2.3 Traceability Techniques
	2.3.1 Static
	2.3.1.1 Concern Graph
	2.3.1.2 Abstract System Dependence Graph

	2.3.2 Dynamic
	2.3.3 Textual
	2.3.3.1 Information Retrieval
	2.3.3.2 Example IR Model: Vector Space Model
	2.3.3.3 IR as a Traceability Approach

	2.3.4 Hybrid
	2.3.4.1 SNIAFL
	2.3.4.2 CERBERUS

	2.4 Trace Validation

	3 Hypothesis of Surroundedness
	3.1 Case Studies
	3.2 Requirement Call Graph
	3.3 Hypothesis

	4 Observations
	4.1 Clustering
	4.2 Connectedness
	4.3 Requirement Call Chain
	4.4 Patterns
	4.4.1 Surrounding Patterns
	4.4.2 Boundary Patterns

	5 Automated Trace Validation Approach
	5.1 T over N Dominance
	5.2 Boundary patterns vs. t/n-surrounding patterns
	5.3 Algorithm

	6 Tool Support: TraZer
	6.1 Design Decisions
	6.1.1 Eclipse as Platform
	6.1.2 Database

	6.2 User Interface
	6.2.1 Perspective
	6.2.2 Editors
	6.2.3 Views

	7 Evaluation
	7.1 Accuracy
	7.2 Coverage
	7.3 Scalability

	8 Discussion and Future Work
	8.1 Incompleteness
	8.2 Granularity
	8.3 Traces Prediction
	8.4 Conclusion

	Bibliography

